高级检索
当前位置: 首页 > 详情页

Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson's models via regulating autophagy-lysosome pathway

文献详情

资源类型:
Pubmed体系:
机构: [1]Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China. [2]Institute of New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China. [3]Department of Rehabilitation, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China. [4]Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China
出处:
ISSN:

摘要:
The abnormal accumulation of α-synuclein (α-syn) is a crucial factor for the onset and pathogenesis of Parkinson's disease (PD), and the autophagy-lysosome pathway (ALP) contributes to α-syn turnover. AMP-activated protein kinase (AMPK) and the mammalian target of rapamycin (mTOR) regulate autophagy by initiating the macroautophagy cascade and promoting lysosomal biogenesis via increased transcription factor EB (TFEB) activity. Hence, activation of AMPK-mTOR-TFEB axis-mediated autophagy might promote α-syn clearance in PD. Harmol is a β-carboline alkaloid that has been extensively studied in a variety of diseases but rarely in PD models. In this study, we aimed to evaluate the effect and underlying mechanism of harmol in PD models in vitro and in vivo. We show that harmol reduces α-syn via ALP in a dose- and time-dependent manner in cell model that overexpressed human A53T mutant α-syn. We also demonstrate that harmol promotes the translocation of TFEB into the nucleus and accompanies the restoration of autophagic flux and lysosomal biogenesis. Importantly, harmol improves motor impairment and down-regulates α-syn levels in the substantia nigra and prefrontal cortex in the α-syn transgenic mice model. Further studies revealed that harmol might activate ALP through AMPK-mTOR-TFEB to promote α-syn clearance. These in vitro and in vivo improvements demonstrate that harmol activates the AMPK-mTOR-TFEB mediated ALP pathway, resulting in reduced α-syn, and suggesting the potential benefit of harmol in the treatment of PD.© 2022. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 神经科学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 神经科学
第一作者:
第一作者机构: [1]Guangdong Provincial Engineering Research Center for Modernization of TCM, Guangdong Provincial Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号