高级检索
当前位置: 首页 > 详情页

Construct a classification decision tree model to select the optimal equation for estimating glomerular filtration rate and estimate it more accurately

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Zhejiang Chinese Med Univ, Affiliated Hosp 1, Nephrol Dept, Zhejiang Prov Hosp Tradit Chinese Med,, 54 Youdian Rd, Hangzhou, Zhejiang, Peoples R China [2]Heilongjiang Univ Chinese Med, Grad Sch, 24 Heping Rd, Harbin, Heilongjiang, Peoples R China [3]Zhejiang Chinese Med Univ, Grad Sch, 548 Binwen Rd, Hangzhou, Zhejiang, Peoples R China [4]Beijing Univ Chinese Med Longgang, Shenzhen Hosp, Orthoped Dept, 1 Dayun Rd, Shenzhen, Guangdong, Peoples R China
出处:
ISSN:

摘要:
Chronic kidney disease (CKD) has become a worldwide public health problem and accurate assessment of renal function in CKD patients is important for the treatment. Although the glomerular filtration rate (GFR) can accurately evaluate the renal function, the procedure of measurement is complicated. Therefore, endogenous markers are often chosen to estimate GFR indirectly. However, the accuracy of the equations for estimating GFR is not optimistic. To estimate GFR more precisely, we constructed a classification decision tree model to select the most befitting GFR estimation equation for CKD patients. By searching the HIS system of the First Affiliated Hospital of Zhejiang Chinese Medicine University for all CKD patients who visited the hospital from December 1, 2018 to December 1, 2021 and underwent Gate's method of Tc-99m-DTPA renal dynamic imaging to detect GFR, we eventually collected 518 eligible subjects, who were randomly divided into a training set (70%, 362) and a test set (30%, 156). Then, we used the training set data to build a classification decision tree model that would choose the most accurate equation from the four equations of BIS-2, CKD-EPI(CysC), CKD-EPI(Cr-CysC) and Ruijin, and the equation was selected by the model to estimate GFR. Next, we utilized the test set data to verify our tree model, and compared the GFR estimated by the tree model with other 13 equations. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Bland-Altman plot were used to evaluate the accuracy of the estimates by different methods. A classification decision tree model, including BSA, BMI, 24-hour Urine protein quantity, diabetic nephropathy, age and RASi, was eventually retrieved. In the test set, the RMSE and MAE of GFR estimated by the classification decision tree model were 12.2 and 8.5 respectively, which were lower than other GFR estimation equations. According to Bland-Altman plot of patients in the test set, the eGFR was calculated based on this model and had the smallest degree of variation. We applied the classification decision tree model to select an appropriate GFR estimation equation for CKD patients, and the final GFR estimation was based on the model selection results, which provided us with greater accuracy in GFR estimation.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
JCR分区:
出版当年[2020]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Zhejiang Chinese Med Univ, Affiliated Hosp 1, Nephrol Dept, Zhejiang Prov Hosp Tradit Chinese Med,, 54 Youdian Rd, Hangzhou, Zhejiang, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号