资源类型:
期刊
Pubmed体系:
Journal Article
文章类型:
论著
机构:
[1]Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China.
[2]College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
[3]Department of Orthopaedics of TCM Clinical Unit, the Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100048, P. R. China.
[4]Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
ISSN:
1613-6810
关键词:
capillary bridges
flexible devices
microarrays
near-infrared phototransistors
organic single crystals
摘要:
Flexible organic near-infrared (NIR) phototransistors hold promising prospects for potential applications such as noninvasive bioimaging, health monitoring, and biometric authentication. For integrated circuits of high-performance devices, organic single-crystalline micro-/nanostructures with precise positioning are prominently anticipated. However, the manufacturing of organic single-crystalline arrays remains a conundrum due to difficulties encountered in patterning arrays of dewetting processes at micron-scale confined space and modulating the dewetting dynamics. Herein, we utilize a capillary-bridge lithography strategy to fabricate organic 1D arrays with high quality, homogeneous size, and deterministic location toward high-performance flexible organic NIR phototransistors. Regular micro-liquid stripes and unidirectional dewetting are synchronously achieved by adapting micropillar templates with asymmetric wettability. As a result, high-throughput 1D arrays based organic field-effect transistors exhibit high electron mobility up to 9.82 cm2 V-1 s-1 . Impressively, flexible NIR phototransistors also show outstanding photoelectronic performances with a photosensitivity of 9.87 × 105 , a responsivity of 1.79 × 104 A W-1 , and a specific detectivity of 3.92 × 1014 Jones. This work paves a novel way to pattern high-throughput organic single-crystalline microarrays toward flexible NIR organic optoelectronics.© 2022 Wiley-VCH GmbH.
基金:
The authors acknowledge
the Ji Hua Laboratory Science Program (grant no. X190251UZ190), the
National Natural Science Foundation (52173190, 51922012, 52103238,
and 21633014), the Ministry of Science and Technology (MOST) of China
(2017YFA0204504, 2018YFA0208502, and 2018YFA0704803), the Youth
Innovation Promotion Association CAS (2018034) and Project funded by
China Postdoctoral Science Foundation (2021M701401).
PubmedID:
36084233
中科院(CAS)分区:
出版当年[2021]版:
大类
|
2 区
材料科学
小类
|
2 区
化学综合
2 区
物理化学
2 区
纳米科技
2 区
材料科学:综合
2 区
物理:应用
2 区
物理:凝聚态物理
最新[2025]版:
大类
|
2 区
材料科学
小类
|
2 区
化学:综合
2 区
材料科学:综合
2 区
纳米科技
2 区
物理:应用
2 区
物理:凝聚态物理
第一作者:
Zhang Yu
第一作者机构:
[1]Ji Hua Laboratory, Foshan, Guangdong, 528200, P. R. China.
推荐引用方式(GB/T 7714):
Zhang Yu,Qiu Yuchen,Li Xinyi,et al.Organic Single-Crystalline Microwire Arrays toward High-Performance Flexible Near-Infrared Phototransistors[J].Small (Weinheim an der Bergstrasse, Germany).2022,e2203429.doi:10.1002/smll.202203429.
APA:
Zhang Yu,Qiu Yuchen,Li Xinyi,Guo Yangwu,Cao Shiqi...&Jiang Lei.(2022).Organic Single-Crystalline Microwire Arrays toward High-Performance Flexible Near-Infrared Phototransistors.Small (Weinheim an der Bergstrasse, Germany),,
MLA:
Zhang Yu,et al."Organic Single-Crystalline Microwire Arrays toward High-Performance Flexible Near-Infrared Phototransistors".Small (Weinheim an der Bergstrasse, Germany) .(2022):e2203429