高级检索
当前位置: 首页 > 详情页

Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive® Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.. [2]Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. [3]Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China
出处:
ISSN:

摘要:
Diabetic cutaneous ulcers (DCU) are a complication for diabetes patients, mostly occurring in the foot and causing non-healing diabetic foot ulcers. Mesenchymal stem cell (MSC)-based therapy is currently being investigated as a therapeutic avenue for chronic diabetic ulcers. However, poor engraftment, short retention, and low survival still limit the treatment effectiveness. Hydroactive® Gel is a sterile transparent gel made of natural hydrocolloid, which has been widely used for wound management. Whether transplantation of Wharton's jelly mesenchymal stem cells (WJMSCs) encapsulated with Hydroactive® Gel is helpful to diabetic ulcers wound healing remains to be explored. The biocompatibility experiments showed that WJMSCs embedded in Hydroactive® Gel did not influence the cell viability, survival, proliferation, and apoptosis of WJMSCs in vitro. RNA-seq results also implied that Hydroactive® Gel + WJMSCs transplantation activated the "cytokine-cytokine receptor interaction", "mononuclear cell differentiation", "regulation of cell-cell adhesion", and "chemokine receptor activity" to accelerate the inflammatory reaction and epidermis regeneration in diabetic wounds. Histological analysis results demonstrated that Hydroactive® Gel encapsulated WJMSCs transplantation promoted diabetic wound healing and regeneration, indicating improved dermis regeneration, sebaceous gland formation, and type III collagen fiber deposition. Besides, immunohistochemical analysis results showed that Hydroactive® Gel + WJMSCs transplantation also facilitated the transformation of pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, cell proliferation, and neovascularization at the wound site. Hydroactive® Gel encapsulation further prolonged the retention time of WJMSCs at the diabetic wound site. Above all, Hydroactive® Gel accelerates WJMSCs-mediated diabetic wound healing by promoting macrophage transformation, facilitating cell proliferation and angiogenesis, and prolonging cell retention time. Our findings may potentially provide a useful therapeutic strategy based on the combination of WJMSCs and biomedical materials for patients with diabetic cutaneous ulcers.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 3 区 材料科学:生物材料
最新[2025]版:
大类 | 3 区 材料科学
小类 | 3 区 材料科学:生物材料
JCR分区:
出版当年[2020]版:
Q2 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China..
通讯作者:
通讯机构: [1]MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.. [2]Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号