高级检索
当前位置: 首页 > 详情页

Deep learning for screening primary osteopenia and osteoporosis using spine radiographs and patient clinical covariates in a Chinese population

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Guangzhou Univ Chinese Med, Dept Radiol, Affiliated Hosp 2, Guangzhou, Peoples R China [2]Guangzhou YLZ Ruitu Informat Technol Co Ltd, Dept AI Res Lab, Guangzhou, Peoples R China [3]Guangdong Hosp Chinese Med, Dept Radiol, Zhuhai Branch, Zhuhai, Peoples R China
出处:
ISSN:

关键词: osteoporosis convolutional neural network (CNN) screening dual-energy x-ray absorptiometry (DXA) lumbar spine x-rays

摘要:
PurposeMany high-risk osteopenia and osteoporosis patients remain undiagnosed. We proposed to construct a convolutional neural network model for screening primary osteopenia and osteoporosis based on the lumbar radiographs, and to compare the diagnostic performance of the CNN model adding the clinical covariates with the image model alone. MethodsA total of 6,908 participants were collected for analysis, including postmenopausal women and men aged 50-95 years, who performed conventional lumbar x-ray examinations and dual-energy x-ray absorptiometry (DXA) examinations within 3 months. All participants were divided into a training set, a validation set, test set 1, and test set 2 at a ratio of 8:1:1:1. The bone mineral density (BMD) values derived from DXA were applied as the reference standard. A three-class CNN model was developed to classify the patients into normal BMD, osteopenia, and osteoporosis. Moreover, we developed the models integrating the images with clinical covariates (age, gender, and BMI), and explored whether adding clinical data improves diagnostic performance over the image mode alone. The receiver operating characteristic curve analysis was performed for assessing the model performance. ResultsAs for classifying osteoporosis, the model based on the anteroposterior+lateral channel performed best, with the area under the curve (AUC) range from 0.909 to 0.937 in three test cohorts. The models with images alone achieved moderate sensitivity in classifying osteopenia, in which the highest AUC achieved 0.785. The performance of models integrating images with clinical data shows a slight improvement over models with anteroposterior or lateral images input alone for diagnosing osteoporosis, in which the AUC increased about 2%-4%. Regarding categorizing osteopenia and the normal BMD, the proposed models integrating images with clinical data also outperformed the models with images solely. ConclusionThe deep learning-based approach could screen osteoporosis and osteopenia based on lumbar radiographs.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
JCR分区:
出版当年[2020]版:
Q1 ENDOCRINOLOGY & METABOLISM
最新[2023]版:
Q2 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Guangzhou Univ Chinese Med, Dept Radiol, Affiliated Hosp 2, Guangzhou, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号