资源类型:
期刊
WOS体系:
Article
Pubmed体系:
Journal Article
收录情况:
◇ SCIE
文章类型:
论著
机构:
[1]DepartmentofComputerScienceandTechnologyofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformatics.
[2]TheThirdAffiliatedHospitalofSunYat-SenUniversity.Herresearchinterestsincludeclinical/medicalinformatics.
[3]DepartmentofComputerScienceandTechnologyofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformatics.
[4]TheThirdAffiliatedHospitalofSunYat-SenUniversity,whoseresearchinterestsincludeclinical/medicalinformatics.
[5]TheThirdAffiliatedHospitalofSunYat-SenUniversity,whoseresearchinterestsincludeclinical/medicalinformatics.
[6]TheThirdAffiliatedHospitalofSunYat-SenUniversity.Hisresearchinterestsincludeclinical/medicalinformatics.
[7]TheThirdAffiliatedHospitalofSunYat-SenUniversity,whoseresearchinterestsincludeclinical/medicalinformatics.
[8]TheThirdAffiliatedHospitalofSunYat-SenUniversity,whoseresearchinterestsincludeclinical/medicalinformatics.
[9]TheFoshanTraditionalChineseMedicineHospital,whoseresearchinterestsincludeclinical/medicalinformatics.
[10]ChinaThreeGorgesUniversityandYichangCentralPeople’sHospital,whoseresearchinterestsincludeclinical/medicalinformatics.
[11]DepartmentofAutomationandBNRistofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformatics,bioinformatics.
[12]SchoolofInformationandCommunicationEngineeringofBeijingUniversityofPostsandTelecommunications.Herresearchinterestsincludeclinical/medicalinformatics.
[13]TheThirdAffiliatedHospitalofSunYat-SenUniversity.Herresearchinterestsincludeclinical/medicalinformatics.
[14]DepartmentofComputerScienceandTechnology&InstituteofArtificialIntelligence&BNRistofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformaticsandbioinformatics.
ISSN:
1467-5463
摘要:
Recent developments of deep learning methods have demonstrated their feasibility in liver malignancy diagnosis using ultrasound (US) images. However, most of these methods require manual selection and annotation of US images by radiologists, which limit their practical application. On the other hand, US videos provide more comprehensive morphological information about liver masses and their relationships with surrounding structures than US images, potentially leading to a more accurate diagnosis. Here, we developed a fully automated artificial intelligence (AI) pipeline to imitate the workflow of radiologists for detecting liver masses and diagnosing liver malignancy. In this pipeline, we designed an automated mass-guided strategy that used segmentation information to direct diagnostic models to focus on liver masses, thus increasing diagnostic accuracy. The diagnostic models based on US videos utilized bi-directional convolutional long short-term memory modules with an attention-boosted module to learn and fuse spatiotemporal information from consecutive video frames. Using a large-scale dataset of 50 063 US images and video frames from 11 468 patients, we developed and tested the AI pipeline and investigated its applications. A dataset of annotated US images is available at https://doi.org/10.5281/zenodo.7272660.© The Author(s) 2022. Published by Oxford University Press.
基金:
NationalKeyR&DProgramofChina(2021YFF1201303and2019YFB1404804),NationalNaturalScienceFoundationofChina(grants61872218and61906105),GuoqiangInstituteofTsinghuaUniversity,TsinghuaUniversityInitiativeScientificResearchProgram,BeijingNationalResearchCenterforInformationScienceandTechnology(BNRist)andTsinghua-QingdaoInstituteofDataScience.
WOS:
WOS:001023517000090
PubmedID:
36575566
中科院(CAS)分区:
出版当年[2022]版:
大类
|
2 区
生物学
小类
|
1 区
数学与计算生物学
1 区
生化研究方法
最新[2025]版:
大类
|
2 区
生物学
小类
|
1 区
数学与计算生物学
2 区
生化研究方法
JCR分区:
出版当年[2021]版:
Q1
BIOCHEMICAL RESEARCH METHODS
Q1
MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1
BIOCHEMICAL RESEARCH METHODS
Q1
MATHEMATICAL & COMPUTATIONAL BIOLOGY
影响因子:
6.8
最新[2023版]
7.9
最新五年平均
13.994
出版当年[2021版]
12.784
出版当年五年平均
11.622
出版前一年[2020版]
9.5
出版后一年[2022版]
第一作者:
Xu Yiming
第一作者机构:
[1]DepartmentofComputerScienceandTechnologyofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformatics.
共同第一作者:
Zheng Bowen;Liu Xiaohong
通讯作者:
Wang Guangyu;Ren Jie;Chen Ting
通讯机构:
[12]SchoolofInformationandCommunicationEngineeringofBeijingUniversityofPostsandTelecommunications.Herresearchinterestsincludeclinical/medicalinformatics.
[13]TheThirdAffiliatedHospitalofSunYat-SenUniversity.Herresearchinterestsincludeclinical/medicalinformatics.
[14]DepartmentofComputerScienceandTechnology&InstituteofArtificialIntelligence&BNRistofTsinghuaUniversity.Hisresearchinterestsincludeclinical/medicalinformaticsandbioinformatics.
[*1]DepartmentofComputerScienceandTechnology&InstituteofArtificialIntelligence&BNRist,TsinghuaUniversity,Beijing,China
[*2]TheThirdAffiliatedHospitalofSunYat-SenUniversity,Guangzhou,Guangdong,China
[*3]SchoolofInformationandCommunicationEngineering,BeijingUniversityofPostsandTelecommunications,Beijing,China.
推荐引用方式(GB/T 7714):
Xu Yiming,Zheng Bowen,Liu Xiaohong,et al.Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames[J].BRIEFINGS IN BIOINFORMATICS.2023,24(1):doi:10.1093/bib/bbac569.
APA:
Xu Yiming,Zheng Bowen,Liu Xiaohong,Wu Tao,Ju Jinxiu...&Chen Ting.(2023).Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames.BRIEFINGS IN BIOINFORMATICS,24,(1)
MLA:
Xu Yiming,et al."Improving artificial intelligence pipeline for liver malignancy diagnosis using ultrasound images and video frames".BRIEFINGS IN BIOINFORMATICS 24..1(2023)