高级检索
当前位置: 首页 > 详情页

The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China [2]The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China [3]Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
出处:
ISSN:

关键词: P aeruginosa Bloodstream infection small RNA PrrH Iron homeostasis Oxidative resistance

摘要:
Small regulatory RNAs (sRNAs) regulate multiple physiological functions in bacteria, and sRNA PrrH can regulate iron homeostasis and virulence. However, the function of PrrH in Pseudomonas aeruginosa (P. aeruginosa) bloodstream infection (BSI) is largely unknown. The aim of this study was to investigate the role of PrrH in P. aeruginosa BSI model. First, P. aeruginosa PAO1 was co-cultured with peripheral blood cells for 6 h. qRT-PCR results showed a transient up-regulation of PrrH expression at 1 h. Simultaneously, the expression of iron uptake genes fpvA, pvdS and phuR were upregulated. In addition, the use of iron chelator 2,2'-dipyridyl to create low-iron conditions caused up-regulation of PrrH expression, a result similar to the BSI model. Furthermore, the addition of FeCl3 was found to decrease PrrH expression. These results support the hypothesis that the expression of PrrH is regulated by iron in BSI model. Then, to clarify the effect of PrrH on major cells in the blood, we used PrrH mutant, overexpressing and wild-type strains to act separately on erythrocytes and neutrophils. On one hand, the hemolysis assay revealed that PrrH contributes to the hemolytic activity of PAO1, and its effect was dependent on the T3SS system master regulator gene exsA, yet had no association with the hemolytic phospholipase C (plcH), pldA, and lasB elastase genes. On the other hand, PrrH mutant enhanced the oxidative resistance of PAO1 in the neutrophils co-culture assay, H2O2-treated growth curve and conventional plate spotting assays. Furthermore, the katA was predicted to be a target gene of PrrH by bioinformatics software, and then verified by qRT-PCR and GFP reporter system. In summary, dynamic changes in the expression of prrH are iron-regulated during PAO1 bloodstream infection. In addition, PrrH promotes the hemolytic activity of P. aeruginosa in an exsA-dependent manner and negatively regulates katA to reduce the oxidative tolerance of P. aeruginosa.Copyright © 2023 Elsevier Ltd. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 微生物学 4 区 免疫学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 免疫学 3 区 微生物学
JCR分区:
出版当年[2021]版:
Q3 IMMUNOLOGY Q3 MICROBIOLOGY
最新[2023]版:
Q2 MICROBIOLOGY Q3 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China [2]The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2020 今日访问量:0 总访问量:646 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号