高级检索
当前位置: 首页 > 详情页

Deep-learning-based survival prediction of patients with cutaneous malignant melanoma

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China. [2]Office of Drug Clinical Trial Institution, The First Affiliated Hospital of Jinan University, Guangzhou, China. [3]School of Mechatronical Engineering, Guangdong Polytechnic Normal University, Guangzhou, China. [4]Institute of Biomedical Transformation, Jinan University, Guangzhou, China. [5]Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. [6]Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China. [7]Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China. [8]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China. [9]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China.
出处:
ISSN:

摘要:
This study obtained data on patients with cutaneous malignant melanoma (CMM) from the Surveillance, Epidemiology, and End Results (SEER) database, and used a deep learning and neural network (DeepSurv) model to predict the survival rate of patients with CMM and evaluate its effectiveness.We collected information on patients with CMM between 2004 and 2015 from the SEER database. We then randomly divided the patients into training and testing cohorts at a 7:3 ratio. The likelihood that patients with CMM will survive was forecasted using the DeepSurv model, and its results were compared with those of the Cox proportional-hazards (CoxPH) model. The calibration curves, time-dependent area under the receiver operating characteristic curve (AUC), and concordance index (C-index) were used to assess the prediction abilities of the model.This study comprised 37,758 patients with CMM: 26,430 in the training cohort and 11,329 in the testing cohort. The CoxPH model demonstrated that the survival of patients with CMM was significantly influenced by age, sex, marital status, summary stage, surgery, radiotherapy, chemotherapy, postoperative lymph node dissection, tumor size, and tumor extension. The C-index of the CoxPH model was 0.875. We also constructed the DeepSurv model using the data from the training cohort, and its C-index was 0.910. We examined how well the aforementioned two models predicted outcomes. The 1-, 3-, and 5-year AUCs were 0.928, 0.837, and 0.855, respectively, for the CoxPH model, and 0.971, 0.947, and 0.942 for the DeepSurv model. The DeepSurv model presented a greater predictive effect on patients with CMM, and its reliability was better than that of the CoxPH model according to both the AUC value and the calibration curve.The DeepSurv model, which we developed based on the data of patients with CMM in the SEER database, was found to be more effective than the CoxPH model in predicting the survival time of patients with CMM.Copyright © 2023 Yu, Yang, Wu, Shaohui, Xia, Zhao, Ming, Wu, Hu, Deng and Lyu.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
第一作者:
第一作者机构: [1]Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Dermatology, The First Affiliated Hospital of Jinan University and Jinan University Institute of Dermatology, Guangzhou, China. [7]Department of Dermatology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China. [8]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China. [9]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号