高级检索
当前位置: 首页 > 详情页

Reprogramming of TAMs via the STAT3/CD47-SIRPα axis promotes acquired resistance to EGFR-TKIs in lung cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]National-Local Joint Engineering Laboratory of Draggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China [2]Department of Thoracic Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China [3]Increasepharm (Hengqin) Innovative Medicine Institute Co. Ltd, Zhuhai, 519000, China [4]Department of Medicine, Division of Hematology-Oncology, and Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA [5]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 519000, Macau [6]Department of Head and Neck/Thoracic Medical Oncology, The First People’s Hospital of Foshan, Foshan, 52800, China
出处:
ISSN:

关键词: Acquired TKI resistance TAMs CD47 STAT3 Lung cancer

摘要:
Cross-talk between the tumor microenvironment (TME) and cancer cells plays an important role in acquired drug resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). The role of tumor-associated macrophages (TAMs), the major component of the TME, in acquired resistance remains unclear. In this study, M2-like reprogramming of TAMs and reduced phagocytosis by macrophages were observed in gefitinib-resistant lung cancer cells and tumor xenografts. CD47 was upregulated in TKI-resistant lung cancer cells, and M2 macrophage polarization and cancer cell escape from macrophage phagocytosis were enhanced. Culture medium from TKI-resistant cells led to metabolic reprogramming of TAMs. STAT3 was associated with CD47 expression in TKI-resistant lung cancer cells. Genetic and pharmacological inhibition of STAT3 enhanced the phagocytic activity of TAMs and alleviated the acquired resistance to EGFR-TKIs via inhibiting the CD47-SIRPα signaling axis and M2 polarization in the co-culture system. Moreover, STAT3 transcriptionally regulated CD47 expression by binding to consensus DNA response elements in the intron of the CD47 gene. Furthermore, the combination of gefitinib with a STAT3 inhibitor and an anti-CD47 monoclonal antibody alleviated the acquired resistance to gefitinib in vitro and in vivo. Collectively, our study reveals the role of TAM reprogramming and the CD47-SIRPα axis in acquired EGFR-TKI resistance and provides a novel therapeutic strategy to overcome the acquired resistance to EGFR-TKIs in lung cancer.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
高被引:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2021]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]National-Local Joint Engineering Laboratory of Draggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号