高级检索
当前位置: 首页 > 详情页

Non-invasive tumor microenvironment evaluation and treatment response prediction in gastric cancer using deep learning radiomics

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital,Southern Medical University, Guangzhou, China [2]Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA [3]School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China [4]Graduate Group of Epidemiology, University of California Davis, Davis, CA, USA [5]Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, China [6]The Reproductive Medical Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China [7]Department of Gastrointestinal Surgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of GuangzhouUniversity of Chinese Medicine, Guangzhou, China [8]Department of Gastric Surgery, and State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
出处:
ISSN:

摘要:
The tumor microenvironment (TME) plays a critical role in disease progression and is a key determinant of therapeutic response in cancer patients. Here, we propose a noninvasive approach to predict the TME status from radiological images by combining radiomics and deep learning analyses. Using multi-institution cohorts of 2,686 patients with gastric cancer, we show that the radiological model accurately predicted the TME status and is an independent prognostic factor beyond clinicopathologic variables. The model further predicts the benefit from adjuvant chemotherapy for patients with localized disease. In patients treated with checkpoint blockade immunotherapy, the model predicts clinical response and further improves predictive accuracy when combined with existing biomarkers. Our approach enables noninvasive assessment of the TME, which opens the door for longitudinal monitoring and tracking response to cancer therapy. Given the routine use of radiologic imaging in oncology, our approach can be extended to many other solid tumor types.Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验 2 区 细胞生物学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验 2 区 细胞生物学
JCR分区:
出版当年[2021]版:
Q1 CELL BIOLOGY Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 CELL BIOLOGY Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital,Southern Medical University, Guangzhou, China [2]Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号