高级检索
当前位置: 首页 > 详情页

Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:梯队期刊

机构: [1]Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China. [2]Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, Inner Mongolia 014030, China. [3]CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. [4]Infinitus (China) Company Ltd, Guangzhou, Guangdong 510405, China. [5]The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, Jilin 130021, China. [6]Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China. [7]Xinjiekou Community Health Service Center in Xicheng District, Beijing 100035, China. [8]Department of Spleen and Stomach, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen 518033, China. [9]University of Chinese Academy of Sciences, Beijing 100049, China. [10]Beijing University of Chinese Medicine, Beijing 100105, China. [11]Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
出处:
ISSN:

关键词: Impaired glucose tolerance Diabetes mellitus Gut microbiota Metabolomics

摘要:
Gut microbiota and circulating metabolite dysbiosis predate important pathological changes in glucose metabolic disorders; however, comprehensive studies on impaired glucose tolerance (IGT), a diabetes mellitus (DM) precursor, are lacking. Here, we perform metagenomic sequencing and metabolomics of 47 pairs of individuals with IGT and newly diagnosed DM, and 46 controls with normal glucose tolerance (NGT); patients with IGT are followed-up after 4 years for progression to DM. Analysis of baseline data reveal significant differences in gut microbiota and serum metabolites among the IGT, DM, and NGT groups. In addition, 13 types of gut microbiota and 17 types of circulating metabolites show significant differences at baseline before IGT progressed to DM, including higher levels of Eggerthella unclassified, Coprobacillus unclassified, Clostridium ramosum, L-valine, L-norleucine, and L-isoleucine, and lower levels of Eubacterium eligens, Bacteroides faecis, Lachnospiraceae bacterium 3_1_46FAA, Alistipes senegalensis, Megaspaera elsdenii, Clostridium perfringens, α-linolenic acid, 10E,12Z octadecadienoic acid, and dodecanoic acid. A random forest model based on differential intestinal microbiota and circulating metabolites can predict the progression from IGT to DM (AUC = 0.87). These results suggest that microbiome and metabolome dysbiosis occur in individuals with IGT and have important predictive values and potential for intervention in preventing IGT from progressing to DM.Copyright © 2023. Published by Elsevier Ltd.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 生物学
小类 | 2 区 遗传学 3 区 生化与分子生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生化与分子生物学 1 区 遗传学
JCR分区:
出版当年[2021]版:
Q1 GENETICS & HEREDITY Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
共同第一作者:
通讯作者:
通讯机构: [1]Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China. [3]CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China. [9]University of Chinese Academy of Sciences, Beijing 100049, China. [11]Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin 130117, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号