高级检索
当前位置: 首页 > 详情页

A novel TOX3-WDR5-ABCG2 signaling axis regulates the progression of colorectal cancer by accelerating stem-like traits and chemoresistance

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China. [2]Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. [3]Department of Oncology, Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine The Affiliated Nanhai Hospital of Traditional Chinese Medicine of Jinan University, Foshan, China.
出处:
ISSN:

摘要:
The eradication of cancer stem cells (CSCs) with drug resistance confers the probability of local tumor control after chemotherapy or targeted therapy. As the main drug resistance marker, ABCG2 is also critical for colorectal cancer (CRC) evolution, in particular cancer stem-like traits expansion. Hitherto, the knowledge about the expression regulation of ABCG2, in particular its upstream transcriptional regulatory mechanisms, remains limited in cancer, including CRC. Here, ABCG2 was found to be markedly up-regulated in CRC CSCs (cCSCs) expansion and chemo-resistant CRC tissues and closely associated with CRC recurrence. Mechanistically, TOX3 was identified as a specific transcriptional factor to drive ABCG2 expression and subsequent cCSCs expansion and chemoresistance by binding to -261 to -141 segments of the ABCG2 promoter region. Moreover, we found that TOX3 recruited WDR5 to promote tri-methylation of H3K4 at the ABCG2 promoter in cCSCs, which further confers stem-like traits and chemoresistance to CRC by co-regulating the transcription of ABCG2. In line with this observation, TOX3, WDR5, and ABCG2 showed abnormal activation in chemo-resistant tumor tissues of in situ CRC mouse model and clinical investigation further demonstrated the comprehensive assessment of TOX3, WDR5, and ABCG2 could be a more efficient strategy for survival prediction of CRC patients with recurrence or metastasis. Thus, our study found that TOX3-WDR5/ABCG2 signaling axis plays a critical role in regulating CRC stem-like traits and chemoresistance, and a combination of chemotherapy with WDR5 inhibitors may induce synthetic lethality in ABCG2-deregulated tumors.Copyright: © 2023 Hao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 生物学
小类 | 1 区 生物学 1 区 生化与分子生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生化与分子生物学 1 区 生物学
JCR分区:
出版当年[2021]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 BIOLOGY
最新[2023]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Institute of Cancer Stem Cells & The First Affiliated Hospital, Dalian Medical University, Dalian, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号