高级检索
当前位置: 首页 > 详情页

Salidroside protects pulmonary artery endothelial cells against hypoxia-induced apoptosis via the AhR/NF-κB and Nrf2/HO-1 pathways

文献详情

资源类型:
Pubmed体系:
机构: [1]TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China [2]Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China [3]Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China [4]Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA [5]State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, PR China
出处:
ISSN:

关键词: Pulmonary hypertension Salidroside Apoptosis Aryl hydrocarbon receptor Nuclear factor erythroid 2-related factor 2

摘要:
The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive.The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms.Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h.Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro.Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1β, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats.SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.Copyright © 2024 The Author(s). Published by Elsevier GmbH.. All rights reserved.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 药物化学 1 区 全科医学与补充医学 1 区 药学 1 区 植物科学
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 药物化学 1 区 全科医学与补充医学 1 区 药学 1 区 植物科学
第一作者:
第一作者机构: [1]TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China [2]Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
共同第一作者:
通讯作者:
通讯机构: [1]TAAHC-GDMU Biomedical and Health Joint R&D Center, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agriculture and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resource Scientific Protection and Utilization, Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, Tibet, PR China [2]Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, GDMU-TAAHC Biomedical and Health Joint R&D Center, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China [3]Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, PR China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号