高级检索
当前位置: 首页 > 详情页

Novel Compound-Target Interactions Prediction for the Herbal Formula Hua-Yu-Qiang-Shen-Tong-Bi-Fang

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China [2]The Second Clinical College, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China [3]Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China.
出处:
ISSN:

关键词: herbal formula Hua-Yu-Qiang-Shen-Tong-Bi-Fang natural product in-silico target identification network link prediction

摘要:
Herbal formulae have a long history in clinical medicine in Asia. While the complexity of the formulae leads to the complex compound-target interactions and the resultant multi-target therapeutic effects, it is difficult to elucidate the molecular/therapeutic mechanism of action for the many formulae. For example, the Hua-Yu-Qiang-Shen-Tong-Bi-Fang (TBF), an herbal formula of Chinese medicine, has been used for treating rheumatoid arthritis. However, the target information of a great number of compounds from the TBF formula is missing. In this study, we predicted the targets of the compounds from the TBF formula via network analysis and in silico computing. Initially, the information of the phytochemicals contained in the plants of the herbal formula was collected, and subsequently computed to their corresponding fingerprints for the sake of structural similarity calculation. Then a compound structural similarity network infused with available target information was constructed. Five local similarity indices were used and compared for their performance on predicting the potential new targets of the compounds. Finally, the Preferential Attachment Index was selected for it having an area under curve (AUC) of 0.886, which outperforms the other four algorithms in predicting the compound-target interactions. This method could provide a promising direction for identifying the compound-target interactions of herbal formulae in silico.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 4 区 医学
小类 | 4 区 药物化学 4 区 化学综合 4 区 药学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 药物化学 4 区 化学:综合 4 区 药学
JCR分区:
出版当年[2017]版:
Q3 CHEMISTRY, MULTIDISCIPLINARY Q4 CHEMISTRY, MEDICINAL Q4 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q3 CHEMISTRY, MULTIDISCIPLINARY Q3 PHARMACOLOGY & PHARMACY Q4 CHEMISTRY, MEDICINAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号