高级检索
当前位置: 首页 > 详情页

Computational network pharmacological research of Chinese medicinal plants for chronic kidney disease

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510006, China [2]College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
出处:
ISSN:

关键词: chronic kidney disease traditional Chinese medicine (TCM) molecular docking complex network

摘要:
The interaction between drug molecules and target proteins is the basis of pharmacological action. The pharmacodynamic mechanism of Chinese medicinal plants for chronic kidney disease (CKD) was studied by molecular docking and complex network analysis. It was found that the interaction network of components-proteins of Chinese medicinal plants is different from the interaction network of components-proteins of drugs. The action mechanism of Chinese medicinal plants is different from that of drugs. We also found the interaction network of components-proteins of tonifying herbs is different from the interaction network of components-proteins of evil expelling herbs using complex network research approach. It illuminates the ancient classification theory of Chinese medicinal plants. This computational approach could identify the pivotal components of Chinese medicinal plants and their key target proteins rapidly. The results provide data for development of multi-component Chinese medicine.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2009]版:
最新[2025]版:
大类 | 1 区 化学
小类 | 1 区 化学:综合
JCR分区:
出版当年[2008]版:
最新[2023]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2008版] 出版当年五年平均 出版前一年[2007版]

第一作者:
第一作者机构: [1]Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510006, China
通讯作者:
通讯机构: [1]Guangdong Hospital of Traditional Chinese Medicine, Guangzhou 510006, China [2]College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号