高级检索
当前位置: 首页 > 详情页

Enriched environment enhances histone acetylation of NMDA receptor in the hippocampus and improves cognitive dysfunction in aged mice.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:梯队期刊

机构: [1]Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China [2]Department of Rehabilitation, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China [3]Department of Rehabilitation, First Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, China [4]Department of Rehabilitation Medicine, Sichuan Provincial Rehabilitation Hospital Affiliated to Chengdu University of TCM, Chengdu, SichuanProvince, China [5]South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University ofChinese Medicine, Guangzhou, Guangdong Province, China
出处:
ISSN:

关键词: brain central nervous system factor in vitro model mice recovery regenerations protein

摘要:
The mechanisms of age-associated memory impairment may be associated with glutamate receptor function and chromatin modification. To observe the effect of an enriched environment on the cognitive function of mice with age-associated memory impairment, 3-month-old C57BL/6 male mice ("young" mice) were raised in a standard environment, while 24-month-old C57BL/6 male mice with memory impairment ("age-associated memory impairment" mice) were raised in either a standard environment or an enriched environment. The enriched environment included a variety of stimuli involving movement and sensation. A water maze test was then used to measure cognitive function in the mice. Furthermore, quantitative real-time polymerase chain reaction and western blot assays were used to detect right hippocampal GluN2B mRNA as well as protein expression of GluN2B and CREB binding protein in all mice. In addition, chromatin immunoprecipitation was used to measure the extent of histone acetylation of the hippocampal GluN2B gene promoters. Compared with the young mice, the water maze performance of age-associated memory impairment mice in the standard environment was significantly decreased. In addition, there were significantly lower levels of total histone acetylation and expression of CREB binding protein in the hippocampus of age-associated memory impairment mice in the standard environment compared with the young mice. There were also significantly lower levels of histone acetylation, protein expression, and mRNA expression of GluN2B in the hippocampus of these mice. In contrast, in the age-associated memory impairment mice with the enriched environment intervention, the water maze performance and molecular biological indexes were significantly improved. These data confirm that an enriched environment can improve cognitive dysfunction in age-associated memory impairment mice, and suggest that the mechanisms may be related to the increased expression of CREB binding protein and the increased degree of total histone acetylation in the hippocampus of age-associated memory impairment mice, which may cause the increase of histone acetylation of GluN2B gene promoter and the enhancement of GluN2B mRNA transcription and protein expression in hippocampus. The animal experiment was approved by the Animal Ethics Committee of Yangzhou University, China (approval No. 20170312001) in March 2017.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 神经科学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 细胞生物学 2 区 神经科学
JCR分区:
出版当年[2018]版:
Q3 NEUROSCIENCES Q3 CELL BIOLOGY
最新[2024]版:
Q1 CELL BIOLOGY Q1 NEUROSCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China [2]Department of Rehabilitation, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2023 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号