高级检索
当前位置: 首页 > 详情页

Complexity perception classification method for tongue constitution recognition.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]South China University of Technology, Guangzhou 510000, China [2]Guangdong Artificial Intelligence Engineering Research Center for Traditional Chinese Medicine, Guangzhou 510000, China [3]Guangdong General Hospital, Guangzhou 510000, China
出处:
ISSN:

关键词: Tongue image diagnosis Constitution recognition Sample complexity Deep learning Traditional Chinese Medicine (TCM)

摘要:
The body constitution is much related to the diseases and the corresponding treatment programs in Traditional Chinese Medicine. It can be recognized by the tongue image diagnosis, so that it is essentially regarded as a problem of tongue image classification, where each tongue image is classified into one of nine constitution types. This paper first presents a system framework to automatically identify the constitution through natural tongue images, where deep convolutional neural networks are carefully designed for tongue coating detection, tongue coating calibration, and constitution recognition. Under the system framework, a novel complexity perception (CP) classification method is proposed to nicely perform the constitution recognition, which can better deal with the bad influence of the variation of environmental condition and the uneven distribution of the tongue images on constitution recognition performance. CP performs the constitution recognition based on the complexity of individual tongue images by selecting the classifier with the corresponding complexity. To evaluate the performance of the proposed method, experiments are conducted on three sizes of clinic tongue images from hospitals. The experimental results illustrate that CP is effective to improve the accuracy of body constitution recognition. Copyright © 2019 Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:人工智能 3 区 工程:生物医学 3 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 计算机:人工智能 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2017]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q2 ENGINEERING, BIOMEDICAL Q2 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]South China University of Technology, Guangzhou 510000, China [2]Guangdong Artificial Intelligence Engineering Research Center for Traditional Chinese Medicine, Guangzhou 510000, China
通讯作者:
通讯机构: [1]South China University of Technology, Guangzhou 510000, China [2]Guangdong Artificial Intelligence Engineering Research Center for Traditional Chinese Medicine, Guangzhou 510000, China [*1]South China University of Technology, Guangzhou 510000, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号