高级检索
当前位置: 首页 > 详情页

Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease.

文献详情

资源类型:
Pubmed体系:
机构: [1]Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang 524001 Guangdong, China [2]Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping warehouse No. 5, 100700 Beijing, China
出处:

摘要:
Autophagy, the intracellular lysosomal degradation process plays a pivotal role in podocyte homeostasis in diabetic kidney disease (DKD). Lysosomal function, autophagic activity, and their actions were investigated in vitro and in vivo. We found that LC3-II- and p62-positive vacuoles accumulated in podocytes of patients with DKD. Moreover, we found that advanced glycation end products (AGEs) could increase the protein expression of LC3-II and p62 in a dose- and time-dependent manner in cultured podocytes. However, the mRNA expression of LC3B, Beclin-1 or ATG7, as well as the protein level of Beclin-1 or ATG7 did not change significantly in the AGE-treated cells compared with that in control groups, suggesting that AGEs did not induce autophagy. In addition, AGEs led to an increase in the number of autophagosomes but not autolysosomes, accompanied with a failure in lysosomal turnover of LC3-II or p62, indicating that the degradation of autophagic vacuoles was blocked. Furthermore, we observed a dramatic decrease in the enzymatic activities, and the degradation of DQ-ovalbumin was significantly suppressed after podocytes were treated with AGEs. Plasma-irregular lysosomal-associated membrane protein 1 granules accompanied with the diffusion of cathepsin D expression and acridine orange redistribution were observed in AGE-treated podocytes, indicating that the lysosomal membrane permeability was triggered. Interestingly, we also found that AGEs-induced autophagic inhibition and podocyte injury were mimicked by the specific lysosomotropic agent, L-leucyl-L-leucine methyl ester. The exacerbated apoptosis and Rac-1-dependent actin-cytoskeletal disorganization were alleviated by an improvement in the lysosomal-dependent autophagic pathway by resveratrol plus vitamin E treatment in AGE-treated podocytes. However, the rescued effects were reversed by the addition of leupeptin, a lysosomal inhibitor. It suggests that restoring lysosomal function to activate autophagy may contribute to the development of new therapeutic strategies for DKD.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 生物
小类 | 2 区 细胞生物学
最新[2025]版:
大类 | 1 区 生物学
小类 | 2 区 细胞生物学
第一作者:
第一作者机构: [1]Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang 524001 Guangdong, China [2]Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Shipping warehouse No. 5, 100700 Beijing, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号