高级检索
当前位置: 首页 > 详情页

Indigo Naturalis Suppresses Colonic Oxidative Stress and Th1/Th17 Responses of DSS-Induced Colitis in Mice.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, China [2]School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong [3]The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China [4]Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China [5]Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen 518060, China
出处:
ISSN:

摘要:
Indigo naturalis (also known as Qing-dai, or QD), a traditional Chinese medicine, has been widely used as an anticolitis regimen in the clinical practice of Chinese medicine. However, the precise mechanisms behind its efficacy remain unknown. We investigated the protective effects and associated molecular mechanisms of QD in DSS-induced colitis in mice. We found that QD administration attenuated DSS-induced colon shortening, tissue damage, and the disease activity index during the onset of colitis. Moreover, QD administration significantly suppressed colonic MPO activity and increased the activities of colonic T-SOD, CAT, and GSH-Px, as well the expression of p-AMPK and Nrf-2 in colon tissues of colitic mice. In addition, QD was capable of reducing the colonic Th1 and Th17 cell cytokines, the frequencies of Th1 and Th17 cells, and the phosphorylation of p-STAT1 and p-STAT3 in the mesenteric lymph nodes of colitic mice. An in vitro assay showed that QD significantly suppressed the differentiation of Th1 and Th17 cells. These findings suggest that QD has the potential to alleviate experimental colitis by suppressing colonic oxidative stress and restraining colonic Th1/Th17 responses, which are associated with activating AMPK/Nrf-2 signals and inhibiting STAT1/STAT3 signals, respectively. These findings also support QD as an effective regimen in the treatment of IBD. Copyright © 2019 Hai-tao Xiao et al.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 生物
小类 | 3 区 细胞生物学
最新[2025]版:
JCR分区:
出版当年[2017]版:
Q2 CELL BIOLOGY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural Small Molecule Drugs, Engineering Laboratory of Shenzhen Natural Small Molecule Innovative Drugs, Health Science Center, Shenzhen University, Shenzhen 518060, China [2]School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong [3]The Key Laboratory of Pharmacology and Druggability for Natural Medicines, Department of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
通讯作者:
通讯机构: [2]School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong [5]Shenzhen Research Institute and Continuing Education, Hong Kong Baptist University, Shenzhen 518060, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号