高级检索
当前位置: 首页 > 详情页

Deep learning-based ovarian cancer subtypes identification using multi-omics data

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [a]Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510020, China [b]Center for Reproductive Medicine, Guangdong Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China [c]School of Data and Computer Science, Sun Yat-sen University, Guangzhou, 510000, China
出处:
ISSN:

关键词: Ovarian cancer Deep learning Multi-omics

摘要:
Background: Identifying molecular subtypes of ovarian cancer is important. Compared to identify subtypes using single omics data, the multi-omics data analysis can utilize more information. Autoencoder has been widely used to construct lower dimensional representation for multi-omics feature integration. However, learning in the deep architectures in Autoencoder is difficult for achieving satisfied generalization performance. To solve this problem, we proposed a novel deep learning-based framework to robustly identify ovarian cancer subtypes by using denoising Autoencoder. Results: In proposed method, the composite features of multi-omics data in the Cancer Genome Atlas were produced by denoising Autoencoder, and then the generated low-dimensional features were input into k-means for clustering. At last based on the clustering results, we built the light-weighted classification model with L1-penalized logistic regression method. Furthermore, we applied the differential expression analysis and WGCNA analysis to select target genes related to molecular subtypes. We identified 34 biomarkers and 19 KEGG pathways associated with ovarian cancer. Conclusions: The independent test results in three GEO datasets proved the robustness of our model. The literature reviewing show 19 (56%) biomarkers and 8(42.1%) KEGG pathways identified based on the classification subtypes have been proved to be associated with ovarian cancer. The outcomes indicate that our proposed method is feasible and can provide reliable results. © 2020 The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 生物
小类 | 3 区 数学与计算生物学
最新[2025]版:
大类 | 3 区 生物学
小类 | 3 区 数学与计算生物学
JCR分区:
出版当年[2018]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [a]Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510020, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号