高级检索
当前位置: 首页 > 详情页

A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Artemisia annua on the Treatment of Hepatocellular Carcinoma(Open Access)

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China [2]Department of Traditional Chinese Medicine, #e First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China [3]Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510080, China
出处:
ISSN:

摘要:
Objective. To investigate the potential active ingredients and underlying mechanisms of Artemisia annua (AA) on the treatment of hepatocellular carcinoma (HCC) based on network pharmacology. Methods. In the present study, we used a network pharmacological method to predict its underlying complex mechanism of treating HCC. First, we obtained relative compounds of AA based on the traditional Chinese medicine systems pharmacology (TCMSP) database and collected potential targets of these compounds by target fishing. Then, we built HCC-related targets target by the oncogenomic database of hepatocellular carcinoma (OncoDB.HCC) and biopharmacological network (PharmDB-K) database. Based on the matching results between AA potential targets and HCC targets, we built a protein-protein interaction (PPI) network to analyze the interactions among these targets and screen the hub targets by topology. Furthermore, the function annotation and signaling pathways of key targets were performed by Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using DAVID tools. Finally, the binding capacity between active ingredients and key targets was validated by molecular docking. Results. A total of 19 main active ingredients of AA were screened as target prediction; then, 25 HCC-related common targets were seeked out via multiple HCC databases. The areas of nodes and corresponding degree values of EGFR, ESR1, CCND1, MYC, EGF, and PTGS2 were larger and could be easily found in the PPI network. Furthermore, GO and KEGG enrichment analysis showed that these key targets were significantly involved in multiple biological processes and pathways which participated in tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis to accomplish the anti-HCC activity. The molecular docking analysis showed that quercetin could stably bind to the active pocket of EGFR protein 4RJ5 via LibDock. Conclusion. The anticancer effects of AA on HCC were predicted to be associated with regulating tumor cell proliferation, apoptosis, angiogenesis, tumor invasion, and metastasis via various pathways such as the EGFR signaling pathway, ESR1 signaling pathway, and CCND1 signaling pathway. It is suggested that AA might be developed as a broad-spectrum antitumor drug based on its characteristics of multicomponent, multipath, and multitarget. © 2021 Shuqiao Zhang et al.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 全科医学与补充医学
最新[2025]版:
JCR分区:
出版当年[2019]版:
Q3 INTEGRATIVE & COMPLEMENTARY MEDICINE
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号