高级检索
当前位置: 首页 > 详情页

Automated bone mineral density prediction and fracture risk assessment using plain radiographs via deep learning.

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2]PAII Inc., Bethesda, MD, USA [3]Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan [4]Wuhan Hospital of Traditional Chinese Medicine, Wuhan, China. [5]Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan [6]Department of Obstetrics and Gynecology, Osteoporosis Prevention and Treatment Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan [7]Ping An Insurance (Group) Company of China, Ltd., Shenzhen, Guangdong, China
出处:

摘要:
Dual-energy X-ray absorptiometry (DXA) is underutilized to measure bone mineral density (BMD) and evaluate fracture risk. We present an automated tool to identify fractures, predict BMD, and evaluate fracture risk using plain radiographs. The tool performance is evaluated on 5164 and 18175 patients with pelvis/lumbar spine radiographs and Hologic DXA. The model is well calibrated with minimal bias in the hip (slope = 0.982, calibration-in-the-large = -0.003) and the lumbar spine BMD (slope = 0.978, calibration-in-the-large = 0.003). The area under the precision-recall curve and accuracy are 0.89 and 91.7% for hip osteoporosis, 0.89 and 86.2% for spine osteoporosis, 0.83 and 95.0% for high 10-year major fracture risk, and 0.96 and 90.0% for high hip fracture risk. The tool classifies 5206 (84.8%) patients with 95% positive or negative predictive value for osteoporosis, compared to 3008 DXA conducted at the same study period. This automated tool may help identify high-risk patients for osteoporosis.© 2021. The Author(s).

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
最新[2025]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
第一作者:
第一作者机构: [1]Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
共同第一作者:
通讯作者:
通讯机构: [1]Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, Taiwan [2]PAII Inc., Bethesda, MD, USA [5]Department of Medicine, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号