机构:[a]National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China深圳市康宁医院深圳医学信息中心[b]CISTIB, School of Computing and LICAMM, School of Medicine, University of Leeds, Leeds, United Kingdom[c]Department of Cardiovascular Sciences, and Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium[d]Medical Imaging Research Center, UZ Leuven, Herestraat 49, 30 0 0 Leuven, Belgium[e]Department of Radiology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China[f]Department of Acupuncture, First Affiliated Hospital, Guangxi University of Chinese Medicine, 530023 Nanning, China[g]Department of Radiology, the People’s Hospital of Guangxi Zhuang Autonomous Region, 530021 Guangxi, China[h]Alan Turing Institute, London, United Kingdom
This work was supported partly by China Scholarship Council
Studentship with the University of Leeds, National Natural
Science Foundation of China (Nos. 61871274 , 81760886 ,
61801305 , 82060315 , and 8210073104 ), Key Laboratory of
Medical Image Processing of Guangdong Province (No.
K21730 0 0 03), Guangdong Pearl River Talents Plan (2016ZT06S220),
Shenzhen Peacock Plan (Nos. KQTD2016053112051497 and
KQTD2015033016104926 ), and Shenzhen Key Basic Research
Project (Nos. GJHZ20190822095414576 , JCYJ20180507184647636 ,
JCYJ20190808155618806 , JCYJ2017081809410 9846 ,
JCYJ20150930105133185 , and JCYJ20170302153337765 ), the Science
and Technology Plan of Guangxi (No. 14124004-1-27 ), and the
Guangxi Natural Science Foundation (No. 2016GXNSFAA380086).
AFF is partially funded by Royal Academy of Engineering (INSILEX
CiET1819/19), the Chinese Academy of Sciences (PIFI Program),
the Pengcheng Visiting Scholars Award from Shenzhen Ministry of
Education
语种:
外文
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类|1 区医学
小类|1 区计算机:人工智能1 区计算机:跨学科应用1 区工程:生物医学1 区核医学
最新[2025]版:
大类|1 区医学
小类|1 区计算机:人工智能1 区计算机:跨学科应用1 区工程:生物医学1 区核医学
第一作者:
第一作者机构:[a]National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, China
通讯作者:
推荐引用方式(GB/T 7714):
Baiying Lei,Nina Cheng,Alejandro F. Frangi,et al.Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis.[J].Medical image analysis.2021,74:102248.doi:10.1016/j.media.2021.102248.
APA:
Baiying Lei,Nina Cheng,Alejandro F. Frangi,Yichen Wei,Bihan Yu...&Zhiguo Zhang.(2021).Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis..Medical image analysis,74,
MLA:
Baiying Lei,et al."Auto-weighted centralised multi-task learning via integrating functional and structural connectivity for subjective cognitive decline diagnosis.".Medical image analysis 74.(2021):102248