高级检索
当前位置: 首页 > 详情页

Comprehensive analysis of an immune infiltrate-related competitive endogenous RNA network reveals potential prognostic biomarkers for non-small cell lung cancer.

文献详情

资源类型:
Pubmed体系:
机构: [1]The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China. [2]Integrated Chinese and Western Medicine Postdoctoral research station, Jinan University, Guangzhou, China. [3]Department of Radiotherapy, Guangdong Second Provincial General Hospital, Guangzhou, China. [4]Department of Oncology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. [5]Postdoctoral Research Station, Guangzhou University of Chinese Medicine, Guangzhou, China.
出处:

摘要:
Globally, non-small cell lung cancer (NSCLC) is the most common malignancy and its prognosis remains poor because of the lack of reliable early diagnostic biomarkers. The competitive endogenous RNA (ceRNA) network plays an important role in the tumorigenesis and prognosis of NSCLC. Tumor immune microenvironment (TIME) is valuable for predicting the response to immunotherapy and determining the prognosis of NSCLC patients. To understand the TIME-related ceRNA network, the RNA profiling datasets from the Genotype-Tissue Expression and The Cancer Genome Atlas databases were analyzed to identify the mRNAs, microRNAs, and lncRNAs associated with the differentially expressed genes. Weighted gene co-expression network analysis revealed that the brown module of mRNAs and the turquoise module of lncRNAs were the most important. Interactions among microRNAs, lncRNAs, and mRNAs were prognosticated using miRcode, miRDB, TargetScan, miRTarBase, and starBase databases. A prognostic model consisting of 13 mRNAs was established using univariate and multivariate Cox regression analyses and validated by the receiver operating characteristic (ROC) curve. The 22 immune infiltrating cell types were analyzed using the CIBERSORT algorithm, and results showed that the high-risk score of this model was related to poor prognosis and an immunosuppressive TIME. A lncRNA-miRNA-mRNA ceRNA network that included 69 differentially expressed lncRNAs (DElncRNAs) was constructed based on the five mRNAs obtained from the prognostic model. ROC survival analysis further showed that the seven DElncRNAs had a substantial prognostic value for the overall survival (OS) in NSCLC patients; the area under the curve was 0.65. In addition, the high-risk group showed drug resistance to several chemotherapeutic and targeted drugs including cisplatin, paclitaxel, docetaxel, gemcitabine, and gefitinib. The differential expression of five mRNAs and seven lncRNAs in the ceRNA network was supported by the results of the HPA database and RT-qPCR analyses. This comprehensive analysis of a ceRNA network identified a set of biomarkers for prognosis and TIME prediction in NSCLC.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
第一作者:
第一作者机构: [1]The First School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2027 今日访问量:0 总访问量:659 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号