高级检索
当前位置: 首页 > 详情页

Icariin Attenuation of Diabetic Kidney Disease Through Inhibition of Endoplasmic Reticulum Stress via G Protein-Coupled Estrogen Receptors.

文献详情

资源类型:
Pubmed体系:
机构: [1]Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China.
出处:
ISSN:

摘要:
Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus and has become the primary cause of End-Stage Renal Disease (ESRD) globally. Icariin (ICA), an effective component extracted from Epimedium, has antiosteoporosis effect, antitumor effects, anti-ischemia effects, and other effects. In this study, a mouse DKD model was established, and Icariin solid nanoliposomes were administered to determine whether ICA had a protective effect on the renal function of DKD mice by regulating estrogen level and endoplasmic reticulum (ER) stress pathway. The results showed that the microalbumin/creatinine in urine, serum urea nitrogen, and CHOL in ICA cultured DKD mice significantly decreased, and mice nephropathy improved significantly. rat renal tubule epithelial cells were further tested, and the rat renal tubule epithelial cells were modeled by cultured cells with high glucose. The results showed that high glucose could promote the proliferation of renal tubular epithelial cells. Simultaneously, ICA can inhibit the proliferation of renal tubular epithelial cells and induce cell apoptosis. Furthermore, the expression of ER stress-related proteins IRE1 and XBP-1S was further detected. Additionally, to ICA intervention, a GPER antagonist (G-15) was added for intervention, the inhibitory effects of IRE1 and XBP-1S were reversed, and the ER stress pathway was activated. Cell experiments showed that ICA could promote GPER expression, while inhibiting GPER expression promoted the activation of ER stress pathway, and GPER expression was negatively correlated with ER stress protein expression. Therefore, the experiment proved that in DKD tissues, a high concentration of ICA can inhibit the ER stress response by promoting the expression of GPER, reducing the proliferation of diabetic nephropathy, and increasing the rate of tissue apoptosis.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 工程技术
小类 | 4 区 纳米科技 4 区 材料科学:生物材料
最新[2025]版:
第一作者:
第一作者机构: [1]Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号