机构:[1]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.[2]Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.[3]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China.
This study was supported by Guangdong Provincial Key Laboratory of Traditional
Chinese Medicine Informatization (2021B1212040007).
语种:
外文
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类|4 区医学
小类|4 区核医学
最新[2025]版:
大类|3 区医学
小类|3 区核医学
第一作者:
第一作者机构:[1]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
共同第一作者:
通讯作者:
通讯机构:[1]Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.[3]Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, Guangdong, China.
推荐引用方式(GB/T 7714):
Huang Tao,Yang Rui,Shen Longbin,et al.Deep transfer learning to quantify pleural effusion severity in chest X-rays.[J].BMC medical imaging.2022,22(1):100.doi:10.1186/s12880-022-00827-0.
APA:
Huang Tao,Yang Rui,Shen Longbin,Feng Aozi,Li Li...&Lyu Jun.(2022).Deep transfer learning to quantify pleural effusion severity in chest X-rays..BMC medical imaging,22,(1)
MLA:
Huang Tao,et al."Deep transfer learning to quantify pleural effusion severity in chest X-rays.".BMC medical imaging 22..1(2022):100