资源类型:
申请号:
申请日期:
授权年份:
公开号:
公开日:
法律状态:
主分类号:
分类号:
摘要:
本发明公开了一种核心方的分析发现方法,涉及中医专科专病、医家以及文献核心方大数据关联性研究技术领域,解决了现有技术基于关联规则的分析方法对于药物之间“关联”的定义较为模糊以及基于聚类的核心方关联研究方法在特征值提取和相似度度量方法上存在较大差异的问题。该核心方的分析发现方法在基于知识图谱的基础上利用深度学习技术赋予每个知识单元个体坐标映射,充分利用距离信息,体现他们之间的关联,可综合关联规则、样品聚类和复杂网络社团发现的优势,并达到上述传统方法不具备的优势,即多尺度知识图谱呈现和知识推理。用户可以自由设定社群数量,在常用药对语义检索、可视化中药社团发现,单味药、基础方关联性研究上有显著的优越性。
主权项:
1.一种核心方的分析发现方法,其特征在于,包括步骤:S1、构建可视化的中药知识图谱;S2、基于中药知识图谱挖掘核心方;S3、通过深度学习器将中药知识图谱中的核心方及其配伍构建对应的坐标映射,并建立核心方之间的语义距离信息,建立核心方之间体现相互之间关联度的有向网络;步骤S3的实施过程中又包括以下步骤:S301、确立坐标原点,根据所选各知识元节点属性特征计算地图坐标以定位各节点,输出症状与病机的知识地图;S302、通过设定聚类个数对已有节点进行样品聚类,根据聚类结果进行区块划分,以不同的背景色区别不同聚类;S303、根据步骤S1中确定的节点类别分组结果为节点着色,根据步骤S2中的节点赋权结果调整节点大小。