高级检索
当前位置: 首页 > 详情页

Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer.

文献详情

资源类型:
Pubmed体系:
机构: [1]Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China. [2]MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University, Guangzhou, China. [3]State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China. [4]Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China. [5]Translational medicine laboratory, People's Hospital of Yangjiang City, Guangdong, China. [6]Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.
出处:
ISSN:

关键词: immunotherapy M1 macrophage M2 macrophage tumor microenvironment tumor-associated macrophage

摘要:
Impressive clinical benefit is seen in clinic with PD-1 inhibitors on portion of cancer patients. Yet, there remains an urgent need to develop effective synergizers to expand their clinical application. Tumor-associated macrophage (TAM), a type of M2-polarized macrophage, eliminates or suppresses T-cell-mediated anti-tumor responses. Transforming TAMs into M1 macrophages is an attractive strategy of anti-tumor therapy. Here, we conducted a high-throughput screening and found that Carfilzomib potently drove M2 macrophages to express M1 cytokines, phagocytose tumor cells, and present antigens to T cells. Mechanistically, Carfilzomib elicited unfolded protein response (UPR), activated IRE1α to recruit TRAF2, and activated NF-κB to transcribe genes encoding M1 markers in M2 macrophages. In vivo, Carfilzomib effectively rewired tumor microenvironment through reprogramming TAMs into M1-like macrophages and shrank autochthonous lung cancers in transgenic mouse model. More importantly, Carfilzomib synergized with PD-1 antibody to almost completely regress autochthonous lung cancers. Given the safety profiles of Carfilzomib in clinic, our work suggested a potentially immediate application of combinational treatment with Carfilzomib and PD-1 inhibitors for patients with solid tumors.© 2021 The Authors. Published under the terms of the CC BY 4.0 license.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 医学:研究与实验
第一作者:
第一作者机构: [1]Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes and MOE Key Laboratory of Tumor Molecular Biology, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China.
共同第一作者:
通讯作者:
通讯机构: [4]Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou, China. [6]Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号