高级检索
当前位置: 首页 > 详情页

Machine learning-based investigation of the relationship between gut microbiome and obesity status

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Dalian Univ Technol, Sch Life & Pharmaceut Sci, Panjin 124221, Peoples R China [2]KMHD, Dept Sci Res, Shenzhen 518126, Peoples R China [3]Guangdong Prov Hosp Chinese Med, Guangzhou 510120, Peoples R China [4]First Peoples Hosp Jiashan, Jiashan 314100, Zhejiang, Peoples R China
出处:
ISSN:

关键词: Gut microbiota Obesity Machine learning Metagenome

摘要:
Gut microbiota is believed to play a crucial role in obesity. However, the consistent findings among published studies regarding microbiomeeobesity interaction are relatively rare, and one of the underlying causes could be the limited sample size of cohort studies. In order to identify gut microbiota changes between normal-weight individuals and obese individuals, fecal samples along with phenotype information from 2262 Chinese individuals were collected and analyzed. Compared with normal-weight individuals, the obese individuals exhibit lower diversity of species and higher diversity of metabolic pathways. In addition, various machine learning models were employed to quantify the relationship between obesity status and Body mass index (BMI) values, of which support vector machine model achieves best performance with 0.716 classification accuracy and 0.485 R-2 score. In addition to two well-established obesity-associated species, three species that have potential to be obesity-related biomarkers, including Bacteroides caccae, Odoribacter splanchnicus and Roseburia hominis were identified. Further analyses of functional pathways also reveal some enriched pathways in obese individuals. Collectively, our data demonstrates tight relationship between obesity and gut microbiota in a large-scale Chinese population. These findings may provide potential targets for the prevention and treatment of obesity. (c) 2021 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 4 区 免疫学 4 区 传染病学 4 区 微生物学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 免疫学 4 区 传染病学 4 区 微生物学
JCR分区:
出版当年[2020]版:
Q3 MICROBIOLOGY Q3 INFECTIOUS DISEASES Q4 IMMUNOLOGY
最新[2023]版:
Q3 IMMUNOLOGY Q3 INFECTIOUS DISEASES Q3 MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Dalian Univ Technol, Sch Life & Pharmaceut Sci, Panjin 124221, Peoples R China [2]KMHD, Dept Sci Res, Shenzhen 518126, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Dalian Univ Technol, Sch Life & Pharmaceut Sci, Panjin 124221, Peoples R China [*1]Dagong Rd 2, Panjin 124221, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号