高级检索
当前位置: 首页 > 详情页

Machine learning in nephrology: scratching the surface

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊 ◇ 中华系列

机构: [1]Department of Nephrology, Chinese People’s Liberation Army General Hospital, Chinese People’s Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China [2]Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China [3]Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Nephrology Institute of Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, China.
出处:
ISSN:

关键词: Machine learning Nephrology Kidney diseases

摘要:
Machine learning shows enormous potential in facilitating decision-making regarding kidney diseases. With the development of data preservation and processing, as well as the advancement of machine learning algorithms, machine learning is expected to make remarkable breakthroughs in nephrology. Machine learning models have yielded many preliminaries to moderate and several excellent achievements in the fields, including analysis of renal pathological images, diagnosis and prognosis of chronic kidney diseases and acute kidney injury, as well as management of dialysis treatments. However, it is just scratching the surface of the field; at the same time, machine learning and its applications in renal diseases are facing a number of challenges. In this review, we discuss the application status, challenges and future prospects of machine learning in nephrology to help people further understand and improve the capacity for prediction, detection, and care quality in kidney diseases.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 医学:内科
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:内科
JCR分区:
出版当年[2018]版:
Q3 MEDICINE, GENERAL & INTERNAL
最新[2023]版:
Q1 MEDICINE, GENERAL & INTERNAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Nephrology, Chinese People’s Liberation Army General Hospital, Chinese People’s Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Nephrology, Chinese People’s Liberation Army General Hospital, Chinese People’s Liberation Army Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases, Beijing 100853, China [*1]Department of Nephrology, Chinese People’s Liberation Army General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号