高级检索
当前位置: 首页 > 详情页

Targeted brain delivery of RVG29-modified rifampicin-loaded nanoparticles for Alzheimer's disease treatment and diagnosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China [2]Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, People's Republic of China [3]Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, People's Republic of China [4]Department of Cerebrovascular Disease, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People's Republic of China [5]Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, People's Republic of China
出处:
ISSN:

关键词: Alzheimer's disease blood-brain barrier brain targeting MRI rifampicin beta-amyloid plaques

摘要:
Alzheimer's disease (AD) is an aging-related neurodegenerative disease. The main pathological features of AD are beta-amyloid protein (A beta) deposition and tau protein hyperphosphorylation. Currently, there are no effective drugs for the etiological treatment of AD. Rifampicin (RIF) is a semi-synthetic broad-spectrum antibiotic with anti-13-amyloid deposition, anti-inflammatory, anti-apoptosis, and neuroprotective effects, but its application in AD treatment has been limited for its strong hydrophobicity, high toxicity, short half-life, low bioavailability, and blood-brain barrier hindrance. We designed a novel brain-targeted and MRI-characteristic nanomedicine via loading rabies virus protein 29 (RVG29), rifampicin, and Gd on poly (L-lactide) nanoparticles (RIF@PLA-PEG-Gd/Mal-RVG29). The cytotoxicity assay demonstrated that RIF@PLA-PEG-Gd/Mal-RVG29 had favorable biocompatibility and security. Fluorescence imaging in vivo showed that PLA-PEG-Gd/Mal-RVG29 could deliver rifampicin into the brain by enhancing cellular uptake and brain targeting performance, leading to improvement of the bioavailability of rifampicin. In in vivo study, RIF@PLA-PEG-Gd/Mal-RVG29 improved the spatial learning and memory capability of APP/PS1 mice in the Morris water maze, as compared to rifampicin. Immunofluorescence, TEM, immunoblotting, and H&E staining revealed that RIF@PLA-PEG-Gd/MalRVG29 reduced A beta deposition in hippocampal and cortex of APP/PS1 mice, improved the damage of synaptic ultrastructure, increased the expression level of PSD95 and SYP, as well as reduced the necrosis of neurons. These findings suggest that RIF@PLA-PEG-Gd/Mal-RVG29 may be an effective strategy for the treatment of AD.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 工程技术
小类 | 2 区 工程:生物医学
最新[2025]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, People's Republic of China [*1]Department of Neurology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, People's republic China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号