高级检索
当前位置: 首页 > 详情页

External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Guangzhou Univ Chinese Med, Dept Radiol, Affiliated Hosp 2, Guangzhou 510120, Peoples R China [2]Southern Med Univ, Sch Biomed Engn, Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China [3]Guangxi Med Univ, Dept Radiol, Affiliated Hosp 1, Nanning 530021, Peoples R China [4]Guangzhou Univ Chinese Med, Dept Pathol, Affiliated Hosp 2, Guangzhou 510120, Peoples R China [5]Southern Med Univ, Nanfang Hosp, Dept Med Imaging, Guangzhou 510515, Peoples R China [6]Philips Healthcare, Clin Sci, Guangzhou, Peoples R China
出处:
ISSN:

关键词: Rectal neoplasm Magnetic resonance imaging Machine learning Neoadjuvant therapy

摘要:
Objectives The aim of this study was two-fold: (1) to develop and externally validate a multiparameter MR-based machine learning model to predict the pathological complete response (pCR) in locally advanced rectal cancer (LARC) patients after neoadjuvant chemoradiotherapy (nCRT), and (2) to compare different classifiers' discriminative performance for pCR prediction. Methods This retrospective study includes 151 LARC patients divided into internal (centre A, n = 100) and external validation set (centre B, n = 51). The clinical and MR radiomics features were derived to construct clinical, radiomics, and clinical-radiomics model. Random forest (RF), support vector machine (SVM), logistic regression (LR), K-nearest neighbor (KNN), naive Bayes (NB), and extreme gradient boosting (XGBoost) were used as classifiers. The predictive performance was assessed using the receiver operating characteristic (ROC) curve. Results Eleven radiomics and four clinical features were chosen as pCR-related signatures. In the radiomics model, the RF algorithm achieved 74.0% accuracy (an AUC of 0.863) and 84.4% (an AUC of 0.829) in the internal and external validation sets. In the clinical-radiomics model, RF algorithm exhibited high and stable predictive performance in the internal and external validation datasets with an AUC of 0.906 (87.3% sensitivity, 73.7% specificity, 76.0% accuracy) and 0.872 (77.3% sensitivity, 88.2% specificity, 86.3% accuracy), respectively. RF showed a better predictive performance than the other classifiers in the external validation datasets of three models. Conclusions The multiparametric clinical-radiomics model combined with RF algorithm is optimal for predicting pCR in the internal and external sets, and might help improve clinical stratifying management of LARC patients.

基金:

基金编号: ZY2022YL05

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2021]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Guangzhou Univ Chinese Med, Dept Radiol, Affiliated Hosp 2, Guangzhou 510120, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号