高级检索
当前位置: 首页 > 详情页

Single-cell and bulk transcriptomics reveals M2d macrophages as a potential therapeutic strategy for mucosal healing in ulcerative colitis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China [2]College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, 510640 Guangzhou, China [3]The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
出处:
ISSN:

关键词: Mucosal healing Ulcerative colitis Macrophage IL10-IL10RA VEGFA-VEGFR1 CCL3-CCR1

摘要:
Mucosal healing is essential for treating ulcerative colitis (UC), which results from imbalanced macrophage polarization and dysregulated inflammatory responses. However, the mechanisms of cellular communication and signal transduction that regulate mucosal healing among macrophage subtypes require further investigation. We use bulk and single-cell RNA sequencing analysis to reveal that macrophage subtypes vary in different UC states. At the same time, chemokine and angiogenesis signaling is strongly associated with M2 macrophage's infiltrated proportion. To get more insight into subtypes of macrophages in mucosal healing, we divided macrophages into M1, M2b, and M2d macrophages. Based on the differentially expressed genes (DEGs) between M2d and M1 macrophages, KEGG and GO analysis highlights M2d macrophages' ability to alleviate inflammation and promote epithelial healing. Trajectory analysis revealed opposite differentiation of macrophage subsets between UC and healthy groups, with M1 and M2d macrophages coexisting in the same differentiation branch under UC conditions. Along the pseudotime axis, CCL3 and VEGFA expression increased in UC, while IL10RA remained stable in UC but increased in healthy controls. CellChat identified CCL3-CCR1 has strong communication between M1 and M2d macrophages, while the IL10 signaling pathway is activated explicitly in M2d macrophages to mitigate inflammation and promote epithelial healing. We also speculate that high levels of VEGFA activate endothelial cells expressing VEGFR and worsen inflammation. To conclude, we suggested IL10 and VEGF signaling in M2d macrophages as potential therapeutic targets for mucosal healing. However, it is necessary to establish reliable methods for isolating and purifying M2d macrophages before these targets can be effectively utilized.Copyright © 2023 Elsevier B.V. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 医学
小类 | 2 区 免疫学 2 区 药学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 免疫学
JCR分区:
出版当年[2021]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY
最新[2023]版:
Q1 PHARMACOLOGY & PHARMACY Q2 IMMUNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号