高级检索
当前位置: 首页 > 详情页

Breath-Hold CBCT-Guided CBCT-to-CT Synthesis via Multimodal Unsupervised Representation Disentanglement Learning

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China [2]Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China [3]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Dept Radiat Therapy, Guangzhou 510006, Peoples R China
出处:
ISSN:

关键词: Deep learning adaptive radiation therapy CBCT-to-CT synthesis representation disentanglement unsupervised learning

摘要:
Adaptive radiation therapy (ART) aims to deliver radiotherapy accurately and precisely in the presence of anatomical changes, in which the synthesis of computed tomography (CT) from cone-beam CT (CBCT) is an important step. However, because of serious motion artifacts, CBCT-to-CT synthesis remains a challenging task for breast-cancer ART. Existing synthesis methods usually ignore motion artifacts, thereby limiting their performance on chest CBCT images. In this paper, we decompose CBCT-to-CT synthesis into artifact reduction and intensity correction, and we introduce breath-hold CBCT images to guide them. To achieve superior synthesis performance, we propose a multimodal unsupervised representation disentanglement (MURD) learning framework that disentangles the content, style, and artifact representations from CBCT and CT images in the latent space. MURD can synthesize different forms of images using the recombination of disentangled representations. Also, we propose a multipath consistency loss to improve structural consistency in synthesis and a multidomain generator to improve synthesis performance. Experiments on our breast-cancer dataset show that MURD achieves impressive performance with a mean absolute error of 55.23 +/- 9.94 HU, a structural similarity index measurement of 0.721 +/- 0.042, and a peak signal-to-noise ratio of 28.26 +/- 1.93 dB in synthetic CT. The results show that compared to state-of-the-art unsupervised synthesis methods, our method produces better synthetic CT images in terms of both accuracy and visual quality.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 工程技术
小类 | 1 区 核医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 工程:生物医学 1 区 计算机:跨学科应用
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China [2]Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China
通讯作者:
通讯机构: [1]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Peoples R China [2]Guangdong Prov Key Lab Med Image Proc, Guangzhou 510515, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号