高级检索
当前位置: 首页 > 详情页

Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Dermatology, The First Affiliated Hospital, Jinan University , Guangzhou, Guangdong, China. [2]Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University , Guangzhou, Guangdong, China. [3]Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University , Guangzhou, Guangdong, China.
出处:

关键词: respiratory syncytial virus HIF-1α glycolysis IR-PI3K-Akt signaling mitochondria ROS

摘要:
Glycolysis, a series of oxidative reactions used to metabolize glucose and provide energy to host cells, is also required for respiratory syncytial virus (RSV) infection. However, the role of glycolysis during RSV infection and its underlying molecular mechanisms remain to be further explored. In this study, we investigated the function of hypoxia-inducible factor (HIF)-1α-mediated glycolysis in HEp-2 cells and mouse models during RSV infection. The results showed that RSV infection activated the insulin receptor (IR)-PI3K-Akt axis, upregulated the translation and activity of HIF-1α, increased the expression of glucose transporters (Glut1, Glut3, and Glut4), hexokinase (HK) 1 and 2, and platelet-type phosphofructokinase (PFKP), and promoted glucose uptake and glycolysis. In addition, mitochondrial damage induced by RSV resulted in the generation of large amounts of reactive oxygen species (ROS) in infected cells, which contributed to the stabilization and activation of HIF-1α. An energy map of the glycolytic ATP production rate (Glyco-ATP) versus the mitochondrial ATP production rate (mito-ATP) confirmed a switch from oxidative phosphorylation (OXPHOS) to glycolysis. Inhibition of IR-PI3K-Akt signaling, ROS, or HIF-1α effectively reversed the RSV-induced increase in glycolysis by blocking HIF-1α activation. Importantly, HIF-1α-mediated glycolysis provided energy for the production of progeny RSV virions. The production of infectious virions was nearly abolished after knocking down HIF-1α. PX-478, an orally active HIF-1α inhibitor, effectively inhibited RSV infection in vivo. Collectively, these results indicate the role of HIF-1α-mediated glycolysis in RSV infection and highlight HIF-1α as a potential target for anti-RSV drug development. IMPORTANCE Respiratory syncytial virus (RSV) is the leading etiological agent of lower respiratory tract illness. However, efficacious vaccines or antiviral drugs for treating RSV infections are currently not available. Indeed, RSV depends on host cells to provide energy needed to produce progeny virions. Glycolysis is a series of oxidative reactions used to metabolize glucose and provide energy to host cells. Therefore, glycolysis may be helpful for RSV infection. In this study, we show that RSV increases glycolysis by inducing the stabilization, transcription, translation, and activation of hypoxia-inducible factor (HIF)-1α in infected cells, which is important for the production of progeny RSV virions. This study contributes to understanding the molecular mechanism by which HIF-1α-mediated glycolysis controls RSV infection and reveals an effective target for the development of highly efficient anti-RSV drugs.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 生物学
小类 | 1 区 微生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 微生物学
第一作者:
第一作者机构: [1]Department of Dermatology, The First Affiliated Hospital, Jinan University , Guangzhou, Guangdong, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2020 今日访问量:0 总访问量:646 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号