高级检索
当前位置: 首页 > 详情页

Hybrid feature ranking and classifier aggregation based on multi-criteria decision-making

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Guangzhou Univ Chinese Med, Affiliated Hosp 2, State Key Lab Tradit Chinese Med Syndrome, Guangzhou 510120, Guangdong, Peoples R China [2]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangzhou 510120, Guangdong, Peoples R China [3]Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Radiotherapy Ctr, Guangzhou 510095, Guangdong, Peoples R China [4]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
出处:
ISSN:

关键词: Ensemble classification Ensemble feature selection Feature ranking Ensemble diversity

摘要:
This study introduces an ensemble methodology, namely, hybrid feature ranking and classifier aggregation (HyFraCa), to integrate ensemble feature selection and ensemble classification in a composite framework. The proposed HyFraCa is embedded in a multi-criteria decision-making (MCDM)-based scheme for feature ranking and classifier weighting, with an effective aggregation rule that yields a consensus feature ranking from ensembles of heterogeneous classifiers and feature selectors. Experimental evaluations on 20 public UCI datasets demonstrated the superiority of HyFraCa in producing a more accurate and generalizable classification compared with state-of-the-art benchmark ensemble methods. HyFraCa also provides robust and reliable consensus feature rankings, which are favorable for real-world classification problems in which feature interpretability is emphasized.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气 2 区 运筹学与管理科学
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能 2 区 工程:电子与电气 2 区 运筹学与管理科学
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Guangzhou Univ Chinese Med, Affiliated Hosp 2, State Key Lab Tradit Chinese Med Syndrome, Guangzhou 510120, Guangdong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [3]Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Radiotherapy Ctr, Guangzhou 510095, Guangdong, Peoples R China [4]Southern Med Univ, Sch Biomed Engn, Guangzhou 510515, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号