高级检索
当前位置: 首页 > 详情页

A hierarchical fusion framework to integrate homogeneous and heterogeneous classifiers for medical decision-making

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China [2]School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China [3]The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510120, China [4]Radiotherapy Center, Chenzhou No.1 People's Hospital, Chenzhou, Hunan, 423000, China [5]Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, China [6]Department of Radiation Oncology, the University of Texas, Southwestern Medical Center, Dallas, Texas 75390, USA [7]PVmed Technology, Guangzhou, Guangdong, 510275, China
出处:
ISSN:

关键词: Ensemble diversity Ensemble method Fusion architecture Heterogeneous ensemble Homogeneous ensemble

摘要:
Classifier diversity and fusion architecture are two critical characteristics stressed in homogeneous and heterogeneous ensemble learning methods and they are equally important for building a successful multi-classifier system. In this study, we introduced a two-level framework, namely hierarchical fusion of homogeneous and heterogeneous multi-classifiers (HF2HM), to integrate the diversified classification models produced by feeding heterogeneous classifiers with homogeneous random-projected training datasets. The proposed hierarchical fusion scheme was comprehensively validated using fifteen public UCI datasets and three clinical datasets. The experimental results demonstrated the superiority of the proposed HF2HM framework over the base classifiers and the state-of-the-art benchmark ensemble methods, verifying it as a potential tool to assist in medical decision making in practical clinical settings. © 2020 Elsevier B.V.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:人工智能
最新[2025]版:
大类 | 1 区 计算机科学
小类 | 2 区 计算机:人工智能
JCR分区:
出版当年[2019]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号