高级检索
当前位置: 首页 > 详情页

Cracked Tongue Extraction Model Based on Improved U-Net Method

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China [2]Guangdong Prov Key Lab Tradit Chinese Med Informat, Guangzhou 510630, Peoples R China [3]Guangdong Prov Hosp Chinese Med, Guangzhou 510120, Peoples R China [4]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Guangzhou 510120, Peoples R China [5]China Acad Chinese Med Sci, Xiyuan Hosp, Beijing 100091, Peoples R China
出处:
ISSN:

关键词: Cracked tongue deep learning attention mechanism

摘要:
Tongue diagnosis holds significant importance in Traditional Chinese Medicine (TCM), with cracked tongues serving as a key diagnostic feature. However, the considerable variability in the morphology, depth, and distribution of tongue cracks poses a challenge for accurate extraction. In this paper, a novel deep learning approach is proposed to enhance the decoder of the U-Net model for cracked tongue extraction by incorporating the Hybrid Parallel Attention Mechanism (HPAM). The inclusion of HPAM enables the model to better concentrate on the small-scale feature information of tongue cracks, thereby improving the accuracy of crack segmentation. Experimental results demonstrate the effectiveness of the proposed method across all three tongue crack datasets. The method achieves a MIoU of 69.31% on the open environment dataset, 76.05% MIoU on the non-open environment dataset, and an overall MIoU of 76.92% on the combined dataset. These results signify a significant improvement over existing methods. This study not only offers an effective approach for automating the extraction of cracked tongues but also contributes to the automation and accuracy of tongue diagnosis, thereby benefiting the field of TCM.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 计算机科学
小类 | 3 区 电信学 3 区 工程:电子与电气 4 区 计算机:信息系统
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2021]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China
通讯作者:
通讯机构: [1]Zhongkai Univ Agr & Engn, Coll Informat Sci & Technol, Guangzhou 510225, Peoples R China [2]Guangdong Prov Key Lab Tradit Chinese Med Informat, Guangzhou 510630, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号