高级检索
当前位置: 首页 > 详情页

Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ 自然指数

机构: [1]The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University or The First School of Clinical Medicine, Southern Medical University, Dongguan 523018, China. [2]Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China. [3]NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China. [4]Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou 511400, China. [5]Institute of Chinese Medical Sciences & State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 00000, SAR, China. [6]Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China.
出处:
ISSN:

关键词: plant derived-extracellular vesicles biomimetic delivery system biomimetic nanodrugs vascular calcification treatment sodium thiosulfate bone-vascular axis

摘要:
As the prevalence of vascular calcification (VC), a strong contributor to cardiovascular morbidity and mortality, continues to increase, the need for pharmacologic therapies becomes urgent. Sodium thiosulfate (STS) is a clinically approved drug for therapy against VC; however, its efficacy is hampered by poor bioavailability and severe adverse effects. Plant-derived extracellular vesicles have provided options for VC treatment since they can be used as biomimetic drug carriers with higher biosafety and targeting abilities than artificial carriers. Inspired by natural grapefruit-derived extracellular vesicles (EVs), we fabricated a biomimetic nanocarrier comprising EVs loaded with STS and further modified with hydroxyapatite crystal binding peptide (ESTP) for VC-targeted delivery of STS. In vitro, the ESTP nanodrug exhibited excellent cellular uptake capacity by calcified vascular smooth muscle cells (VSMCs) and subsequently inhibited VSMCs calcification. In the VC mice model, the ESTP nanodrug showed preferentially the highest accumulation in the calcified arteries compared to other treatment groups. Mechanistically, the ESTP nanodrug significantly prevented VC via driving M2 macrophage polarization, reducing inflammation, and suppressing bone-vascular axis as demonstrated by inhibiting osteogenic phenotype trans-differentiation of VSMCs while enhancing bone quality. In addition, the ESTP nanodrug did not induce hemolysis or cause any damage to other organs. These results suggest that the ESTP nanodrug can prove to be a promising agent against VC without the concern of systemic toxicity.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 1 区 材料科学
小类 | 1 区 纳米科技 1 区 化学:综合 1 区 材料科学:综合 1 区 物理化学
最新[2025]版:
大类 | 1 区 材料科学
小类 | 1 区 化学:综合 1 区 材料科学:综合 1 区 纳米科技
第一作者:
第一作者机构: [1]The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University or The First School of Clinical Medicine, Southern Medical University, Dongguan 523018, China. [2]Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号