高级检索
当前位置: 首页 > 详情页

An interpretable machine learning model based on contrast-enhanced CT parameters for predicting treatment response to conventional transarterial chemoembolization in patients with hepatocellular carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [1]Department of Radiology, The First Afliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou 510627, Guangdong, China [2]Department of Interventional Therapy, The Second Afliated Hospital of Guangzhou University of Traditional Chinese Medicine Guangzhou, Guangdong 510627, China [3]Department of Radiology, The People’s Hospital of Wenshan Prefecture, No. 228 Kaihua East Road, Wenshan 663000, Yunnan, China
出处:
ISSN:

关键词: Hepatocellular carcinoma Conventional transarterial chemoembolization Computed tomography Treatment response Machine learning

摘要:
To explore the potential of pre-therapy computed tomography (CT) parameters in predicting the treatment response to initial conventional TACE (cTACE) in intermediate-stage hepatocellular carcinoma (HCC) and develop an interpretable machine learning model.This retrospective study included 367 patients with intermediate-stage HCC who received cTACE as first-line therapy from three centers. We measured the mean attenuation values of target lesions on multi-phase contrast-enhanced CT and further calculated three CT parameters, including arterial (AER), portal venous (PER), and arterial portal venous (APR) enhancement ratios. We used logistic regression analysis to select discriminative features and trained three machine learning models via 5-fold cross-validation. The performance in predicting treatment response was evaluated in terms of discrimination, calibration, and clinical utility. Afterward, a Shapley additive explanation (SHAP) algorithm was leveraged to interpret the outputs of the best-performing model.The mean diameter, ECOG performance status, and cirrhosis were the important clinical predictors of cTACE treatment response, by multiple logistic regression. Adding the CT parameters to clinical variables showed significant improvement in performance (net reclassification index, 0.318, P < 0.001). The Random Forest model (hereafter, RF-combined model) integrating CT parameters and clinical variables demonstrated the highest performance on external validation dataset (AUC of 0.800). The decision curve analysis illustrated the optimal clinical benefits of RF-combined model. This model could successfully stratify patients into responders and non-responders with distinct survival (P = 0.001).The RF-combined model can serve as a robust and interpretable tool to identify the appropriate crowd for cTACE sessions, sparing patients from receiving ineffective and unnecessary treatments.© 2024. Italian Society of Medical Radiology.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 医学
小类 | 1 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2022]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Radiology, The First Afliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou 510627, Guangdong, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号