高级检索
当前位置: 首页 > 详情页

Prognosis prediction and risk stratification of transarterial chemoembolization or intraarterial chemotherapy for unresectable hepatocellular carcinoma based on machine learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Guangdong Prov Hosp Chinese Med, Dept Intervent Therapy, Guangzhou, Guangdong, Peoples R China [2]Guangdong Prov Acad Chinese Med Sci, Guangzhou, Guangdong, Peoples R China [3]Sun Yat Sen Univ, Affiliated Hosp 1, Dept Gastrointestinal Surg, Guangzhou, Guangdong, Peoples R China [4]Sun Yat Sen Univ, Affiliated Hosp 3, Dept Intervent Radiol, Guangzhou, Guangdong, Peoples R China [5]Jinan Univ, Dept Intervent Radiol & Vasc Surg, Affiliated Hosp 1, Guangzhou, Guangdong, Peoples R China [6]Southern Med Univ, Nanfang Hosp, Dept Gen Surg, Div Vasc & Intervent Radiol, Guangzhou, Guangdong, Peoples R China [7]Nanchang Univ, Affiliated Hosp 1, Dept Radiol, Nanchang, Jiangxi, Peoples R China [8]Sun Yat Sen Univ, Collaborat Innovat Ctr Canc Med, Dept Minimal Invas Intervent, State Key Lab Oncol South China,Canc Ctr, Guangzhou, Peoples R China
出处:
ISSN:

关键词: Intra-arterial therapies Hepatocellular carcinoma Risk scoring scale model Machine learning Risk stratification

摘要:
Objective To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC). Methods Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression. Results The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833-0.868) for TD, 0.817 (95%CI, 0.759-0.857) for ITD, and 0.791 (95%CI, 0.748-0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan-Meier analysis confirmed the role of RSSM in risk stratification (p < 0.001). Conclusions The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2022]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Guangdong Prov Hosp Chinese Med, Dept Intervent Therapy, Guangzhou, Guangdong, Peoples R China [2]Guangdong Prov Acad Chinese Med Sci, Guangzhou, Guangdong, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号