高级检索
当前位置: 首页 > 详情页

Lipidomics based on UHPLC/Q-TOF-MS to characterize lipid metabolic profiling in patients with newly diagnosed type 2 diabetes mellitus with dyslipidemia

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. [2]Department of Endocrinology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China. [3]New Drug Research and Development Center, Guangdong Pharmaceutical University, Guangzhou, 510006, China. [4]Department of Traditional Chinese Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
出处:

关键词: Lipid profiles Type 2 diabetes mellitus with dyslipidemia Hyperlipidemia UHPLC-MS Lipidomics

摘要:
Dyslipidemia often accompanies type 2 diabetes mellitus (T2DM). Elevated blood glucose in patients commonly leads to high levels of lipids. Lipid molecules can play a crucial role in early detection, treatment, and prognosis of T2DM with dyslipidemia. Previous lipid studies on T2DM mainly focused on Western diabetic populations with elevated blood glucose. In this research, we investigate both high blood sugar and high lipid levels to better understand changes in plasma lipid metabolism in newly diagnosed Chinese T2DM patients with dyslipidemia (NDDD). We used a plasma lipid analysis method based on ultra-high performance liquid chromatography coupled with mass spectrometry technology (UHPLC-MS) and statistical analysis to characterize lipid profiles and identify potential biomarkers in NDDD patients compared to healthy control (HC) subjects. Additionally, we examined the differences in lipid profiles between hyperlipidemia (HL) patients and HC subjects. We found significant changes in 15 and 23 lipid molecules, including lysophosphatidylcholine (LysoPC), phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and ceramide (Cer), in the NDDD and HL groups compared to the HC group. These altered lipid molecules are associated with five metabolic pathways, with sphingolipid metabolism and glycerophospholipid metabolism being the most relevant to glucose and lipid metabolism changes. These lipid biomarkers are strongly correlated with traditional markers of glucose and lipid metabolism. Notably, Cer(d18:1/24:0), SM(d18:1/24:0), SM(d18:1/16:1), SM(d18:1/24:1), and SM(d18:2/24:1) were identified as essential potential biomarkers closely linked to clinical parameters through synthetic analysis of receiver operating characteristic curves, random forest analysis, and Pearson matrix correlation. These lipid biomarkers can enhance the risk prediction for the development of T2DM in individuals with dyslipidemia but no clinical signs of high blood sugar. Furthermore, they offer insights into the pathological mechanisms of T2DM with dyslipidemia.© 2024 The Authors.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 综合性期刊
小类 | 3 区 综合性期刊
最新[2025]版:
大类 | 4 区 综合性期刊
小类 | 4 区 综合性期刊
JCR分区:
出版当年[2022]版:
Q2 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Pharmacy, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号