高级检索
当前位置: 首页 > 详情页

Exploring Cost-Sensitive Learning in Domain Based Protein-Protein Interaction Prediction

| 认领 | 导出 |

文献详情

资源类型:
WOS体系:

收录情况: ◇ CPCI(ISTP)

机构: [1]Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China [2]Sun Yat Sen Univ, Guangdong Univ Foreign Studies, Business Intelligence & Knowledge Discovery, Guangzhou 510275, Guangdong, Peoples R China [3]Univ Kansas, Dept Elect Engn & Comp Sci, Bioinformat & Comp Life Sci Lab, Lawrence, KS 66045 USA [4]Sun Yat Sen Univ, Sch Business, Guangzhou 510275, Guangdong, Peoples R China [5]Guangzhou Univ TCM, Affiliated Hosp 2, Guangzhou 510120, Guangdong, Peoples R China
出处:
ISSN:

关键词: Cost-sensitive learning Imbalance data Protein-protein interactions

摘要:
Protein interactions are of great biological interest because they orchestrate nearly all cellular processes and can further our understandings in biological processes and diseases. Protein interaction data like many real world datasets are imbalanced in nature. Most protein pairs belong to the non-interaction class and few belong to the interaction class. Most existing protein interaction prediction methods assume equal distribution of the positive and negative interaction data. In this study, we first analyze effects of various portions of negative samples on the performance of domain-based protein interaction prediction methods using Artificial Neural Network (ANN), Bayesian Network (BN), and SVM. Then we introduce cost-sensitive learning to address the class imbalance problem. Experimental results demonstrated that the addition of cost-sensitive learning to each classifier: ANN, BN, and SVM, indeed yields an increase in accuracy.

基金:
语种:
WOS:
第一作者:
第一作者机构: [1]Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号