高级检索
当前位置: 首页 > 详情页

Activatable NIR-II photoacoustic imaging and photochemical synergistic therapy of MRSA infections using miniature Au/Ag nanorods

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [a]Department of Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China [b]Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China [c]Department of Ultrasound, Guangzhou University of Traditional Chinese Medicine First Affiliated Hospital, Guangzhou, 510405, PR China [d]Department of Medical Ultrasonic, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China [e]College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
出处:
ISSN:

关键词: Multidrug-resistant bacterial infections Near-infrared II Photoacoustic imaging Photothermal therapy Theranostics

摘要:
Multidrug-resistant Staphylococcus aureus (MRSA) seriously endanger human health. The development of efficient methods to eliminate the infections and monitor the treatment process are of great significance. Near-infrared-II (NIR-II) photoacoustic (PA) imaging and photothermal therapy (PTT) are highly integrated theranostic platforms with superior performance including a low imaging background, increased tissue penetration depth, and high photothermal threshold. Herein, we report an activatable near-infrared II (NIR-II) phototheranostic strategy using miniature Au/Ag nanorods (NRs) for the photochemical synergistic therapy of MRSA infections and in situ monitoring of the treatment progress. Au/Ag NRs were efficiently activated by ferricyanide solution and allowed to continuously release free Ag+ to eliminate MRSA, triggering NIR-II photothermal and PA performance enhancement. The activated NIR-II photothermal effect in turn accelerated the release of free Ag+ from Au/Ag NRs for the synergistic elimination of gram-positive Staphylococcus aureus and promoted wound healing. No photothermal damages or free Ag+-induced side effects were observed in treated mice. After synergistic treatment, a 20-fold NIR-II PA signal increase with a maximum signal-to-noise measurement of 9.5 was observed between the implanted site and normal tissue, enabling sensitive monitoring of Ag+ release process. The prepared Au/Ag NRs were stable and biocompatible, showing great potential for activatable NIR-II phototheranostic application. © 2020 Elsevier Ltd

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 1 区 工程技术
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 工程:生物医学 1 区 材料科学:生物材料
JCR分区:
出版当年[2018]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [a]Department of Ultrasound, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China [b]Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, CAS Key Laboratory of Health Informatics, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2020 今日访问量:0 总访问量:646 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号