高级检索
当前位置: 首页 > 详情页

Neuroprotective effects of ginsenosides on neural progenitor cells against oxidative injury(Open Access)

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 [2]Department of Cardiac Surgery II, The First Affiliated Hospital Sun Yat‑Sen University, Guangzhou, Guangdong 510080 [3]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078 [4]Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
出处:
ISSN:

关键词: Ginsenosides Neural progenitor cells Oxidative injury

摘要:
Ginsenosides exhibit various neuroprotective effects against oxidative stress. However, which ginsenoside provides optimal effects for the treatment of neurological disorders as a potent antioxidant remains to be elucidated. Therefore, the present study investigated and compared the neuroprotective effects of the Rb1, Rd, Rg1 and Re ginsenosides on neural progenitor cells (NPCs) following tert-Butylhydroperoxide (t-BHP)-induced oxidative injury. Primary rat embryonic cortical NPCs were prepared from E14.5 embryos of Sprague-Dawley rats. The oxidative injury model was established with t-BHP. A lactate dehydrogenase assay and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining were used to measure the viability of the NPCs pre-treated with ginsenosides under oxidative stress. Reverse transcription-quantitative polymerase chain reaction analysis was used to determine the activation of intracellular signaling pathways triggered by the pretreatment of ginsenosides. Among the four ginsenosides, only Rb1 attenuated t-BHP toxicity in the NPCs, and the nuclear factor (erythroizd-derived 2)-like 2/heme oxygenase-1 pathway was found to be key in the intracellular defense against oxidative stress. The present study demonstrated the anti-oxidative effects of ginsenoside Rb1 on NPCs, and suggested that Rb1 may offer potential as a potent antioxidant for the treatment of neurological disorders.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验 4 区 肿瘤学
JCR分区:
出版当年[2014]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL Q4 ONCOLOGY
最新[2023]版:
Q2 MEDICINE, RESEARCH & EXPERIMENTAL Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者机构: [1]Department of Dermatology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016
共同第一作者:
通讯作者:
通讯机构: [3]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078 [*1]State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22 University Road,Macau SAR 999078, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号