高级检索
当前位置: 首页 > 详情页

Prediction of Microvascular Invasion of Hepatocellular Carcinoma Based on Preoperative Diffusion-Weighted MR Using Deep Learning

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China [2]School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou, China [3]Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China [4]Guangzhou Panyu Central Hospital, Guangzhou, China
出处:
ISSN:

关键词: Deep learning Diffusion-weighted MR Hepatocellular carcinoma Microvascular invasion

摘要:
Rationale and Objectives: To investigate the value of diffusion-weighted magnetic resonance imaging for the prediction of microvascular invasion (MVI) of Hepatocellular Carcinoma (HCC) using Convolutional Neural Networks (CNN). Material and methods: This study was approved by the local institutional review board and the patients’ informed consent was waived. Consecutive 97 subjects with 100 HCCs from July 2012 to October 2018 with surgical resection were retrieved. All subjects with diffusion-weighted imaging (DWI) examinations were performed with single-shot echo-planar imaging in a breath-hold routine. DWI parameters were three b values of 0,100,600 sec/mm2. First, apparent diffusion coefficients (ADC) images were computed by mono-exponentially fitting the three b-value points. Then, multiple 2D axial patches (28 × 28) of HCCs from b0, b100, b600, and ADC images were extracted to increase the dataset for training the CNN model. Finally, the fusion of deep features derived from three b value images and ADC was conducted based on the CNN model for MVI prediction. The data set was split into the training set (60 HCCs) and the independent test set (40 HCCs). The output probability of the deep learning model in the MVI prediction of HCCs was assessed by the independent student's t-test for data following a normal distribution and Mann-Whitney U test for data violating the normal distribution. Receiver operating characteristic curve and area under the curve (AUC) were also used to assess the performance for MVI prediction of HCCs in the fixed test set. Results: Deep features in b600 images yielded better performance (AUC = 0.74, p = 0.004) for MVI prediction than b0 (AUC = 0.69, p = 0.023) and b100 (AUC = 0.734, p = 0.011). Comparatively, deep features in the ADC map obtained lower performance (AUC = 0.71, p = 0.012) than that of the higher b value images (b600) for MVI prediction. Furthermore, the fusion of deep features from the b0, b100, b600, and ADC images yielded the best results (AUC = 0.79, p = 0.002) for MVI prediction. Conclusion: Fusion of deep features derived from DWI images concerning the three b-value images and the ADC image yields better performance for MVI prediction. © 2020 The Association of University Radiologists

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2019]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

相关文献

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号