高级检索
当前位置: 首页 > 详情页

Real-time automatic prediction of treatment response to transcatheter arterial chemoembolization in patients with hepatocellular carcinoma using deep learning based on digital subtraction angiography videos

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Jinan Univ, Affiliated Hosp 1, Dept Radiol, 613 Huangpu West Rd, Guangzhou 510627, Guangdong, Peoples R China [2]Shenzhen Res Inst Big Data, Shenzhen, Guangdong, Peoples R China [3]Chinese Univ Hong Kong, Sch Sci & Engn, 2001 Longxiang Ave, Shenzhen, Guangdong, Peoples R China [4]Guangzhou Univ Tradit Chinese Med, Affiliated Hosp 2, Dept Intervent Therapy, Guangzhou, Guangdong, Peoples R China [5]Sun Yat Sen Univ Canc Ctr, Dept Minimally Invas Intervent, Guangzhou, Guangdong, Peoples R China [6]Collaborat Innovat Ctr Canc Med, Guangzhou, Guangdong, Peoples R China [7]Southern Med Univ, Nanfang Hosp, Med Imaging Ctr, 1023 Shatai South Rd, Guangzhou, Guangdong, Peoples R China
出处:
ISSN:

关键词: Hepatocellular carcinoma Transcatheter arterial chemoembolization Deep learning DSA videos

摘要:
Background Transcatheter arterial chemoembolization (TACE) is the mainstay of therapy for intermediate-stage hepatocellular carcinoma (HCC); yet its efficacy varies between patients with the same tumor stage. Accurate prediction of TACE response remains a major concern to avoid overtreatment. Thus, we aimed to develop and validate an artificial intelligence system for real-time automatic prediction of TACE response in HCC patients based on digital subtraction angiography (DSA) videos via a deep learning approach. Methods This retrospective cohort study included a total of 605 patients with intermediate-stage HCC who received TACE as their initial therapy. A fully automated framework (i.e., DSA-Net) contained a U-net model for automatic tumor segmentation (Model 1) and a ResNet model for the prediction of treatment response to the first TACE (Model 2). The two models were trained in 360 patients, internally validated in 124 patients, and externally validated in 121 patients. Dice coefficient and receiver operating characteristic curves were used to evaluate the performance of Models 1 and 2, respectively. Results Model 1 yielded a Dice coefficient of 0.75 (95% confidence interval [CI]: 0.73-0.78) and 0.73 (95% CI: 0.71-0.75) for the internal validation and external validation cohorts, respectively. Integrating the DSA videos, segmentation results, and clinical variables (mainly demographics and liver function parameters), Model 2 predicted treatment response to first TACE with an accuracy of 78.2% (95%CI: 74.2-82.3), sensitivity of 77.6% (95%CI: 70.7-84.0), and specificity of 78.7% (95%CI: 72.9-84.1) for the internal validation cohort, and accuracy of 75.1% (95% CI: 73.1-81.7), sensitivity of 50.5% (95%CI: 40.0-61.5), and specificity of 83.5% (95%CI: 79.2-87.7) for the external validation cohort. Kaplan-Meier curves showed a significant difference in progression-free survival between the responders and non-responders divided by Model 2 (p = 0.002). Conclusions Our multi-task deep learning framework provided a real-time effective approach for decoding DSA videos and can offer clinical-decision support for TACE treatment in intermediate-stage HCC patients in real-world settings.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 核医学 3 区 肿瘤学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 肿瘤学 2 区 核医学
JCR分区:
出版当年[2020]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q3 ONCOLOGY
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Jinan Univ, Affiliated Hosp 1, Dept Radiol, 613 Huangpu West Rd, Guangzhou 510627, Guangdong, Peoples R China [2]Shenzhen Res Inst Big Data, Shenzhen, Guangdong, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [2]Shenzhen Res Inst Big Data, Shenzhen, Guangdong, Peoples R China [3]Chinese Univ Hong Kong, Sch Sci & Engn, 2001 Longxiang Ave, Shenzhen, Guangdong, Peoples R China [5]Sun Yat Sen Univ Canc Ctr, Dept Minimally Invas Intervent, Guangzhou, Guangdong, Peoples R China [6]Collaborat Innovat Ctr Canc Med, Guangzhou, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2022 今日访问量:0 总访问量:648 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号