高级检索
当前位置: 首页 > 详情页

Transcriptomics-based analysis of the mechanism by which Wang-Bi capsule alleviates joint destruction in rats with collagen-induced arthritis.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. [2]Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China. [3]Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China. [4]Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
出处:
ISSN:

关键词: Wang-Bi capsule Rheumatoid arthritis Joint destruction Molecular mechanism Transcriptomic

摘要:
Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied with joint destruction that often leads to disability. Wang-Bi capsule (WB), a traditional Chinese medicine-based herbs formula, has exhibited inhibition effect on joint destruction of collagen-induced arthritis (CIA) animal model in our previous study. But its molecular mechanisms are still obscure. CIA rats were treated intragastrical with WB for eight weeks, and the effect of joints protection were evaluated by hematoxylin and eosin (H&E) staining, safranin O fast green staining, tartrate-resistant acid phosphatase (TRAP) staining and micro‑CT scanning analysis. The transcriptomic of tarsal joints were used to investigate how WB alleviated joint destruction. The histological examination of ankle joints showed WB alleviated both cartilage damage and bone destruction of CIA rats. This protective effect on joints were further evidenced by micro-CT analysis. The transcriptomic analysis showed that WB prominently changed 12 KEGG signaling pathways ("calcium signaling pathway", "cAMP signaling pathway", "cell adhesion molecules", "chemokine signaling pathway", "complement and coagulation cascades", "MAPK signaling pathway", "NF-kappa B signaling pathway", "osteoclast differentiation", "PI3K-Akt signaling pathway", "focal adhesion", "Gap junction" and "Rap1 signaling pathway") associated with bone or cartilage. Several genes (including Il6, Tnfsf11, Ffar2, Plg, Tnfrsf11b, Fgf4, Fpr1, Siglec1, Vegfd, Cldn1, Cxcl13, Chad, Arrb2, Fgf9, Egfr) regulating bone resorption, bone formation and cartilage development were identified by further analysis. Meanwhile, these differentially expressed genes were validated by real-time quantitative PCR. Overall, the protective effect of WB treatment on joint were confirmed in CIA rats, and its basic molecular mechanisms may be associated with regulating some genes (including Il6, Tnfsf11, Ffar2 and Plg etc.) involved in bone resorption, bone formation and cartilage development.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 3 区 全科医学与补充医学 4 区 药学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 全科医学与补充医学 2 区 药学
JCR分区:
出版当年[2019]版:
Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:
Q1 INTEGRATIVE & COMPLEMENTARY MEDICINE Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. [2]Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号