高级检索
当前位置: 首页 > 详情页

Geometric and Dosimetric Evaluation of Deep Learning-Based Automatic Delineation on CBCT-Synthesized CT and Planning CT for Breast Cancer Adaptive Radiotherapy: A Multi-Institutional Study

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Dept Radiat Therapy, Guangzhou, Peoples R China [2]Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China [3]Guangxi Med Univ, Affiliated Hosp 4, Dept Oncol, Liuzhou, Peoples R China
出处:
ISSN:

关键词: deep learning automatic delineation synthetic CT dosimetric evaluation adaptive radiotherapy

摘要:
PurposeWe developed a deep learning model to achieve automatic multitarget delineation on planning CT (pCT) and synthetic CT (sCT) images generated from cone-beam CT (CBCT) images. The geometric and dosimetric impact of the model was evaluated for breast cancer adaptive radiation therapy. MethodsWe retrospectively analyzed 1,127 patients treated with radiotherapy after breast-conserving surgery from two medical institutions. The CBCT images for patient setup acquired utilizing breath-hold guided by optical surface monitoring system were used to generate sCT with a generative adversarial network. Organs at risk (OARs), clinical target volume (CTV), and tumor bed (TB) were delineated automatically with a 3D U-Net model on pCT and sCT images. The geometric accuracy of the model was evaluated with metrics, including Dice similarity coefficient (DSC) and 95% Hausdorff distance (HD95). Dosimetric evaluation was performed by quick dose recalculation on sCT images relying on gamma analysis and dose-volume histogram (DVH) parameters. The relationship between Delta D95, Delta V95 and DSC-CTV was assessed to quantify the clinical impact of the geometric changes of CTV. ResultsThe ranges of DSC and HD95 were 0.73-0.97 and 2.22-9.36 mm for pCT, 0.63-0.95 and 2.30-19.57 mm for sCT from institution A, 0.70-0.97 and 2.10-11.43 mm for pCT from institution B, respectively. The quality of sCT was excellent with an average mean absolute error (MAE) of 71.58 +/- 8.78 HU. The mean gamma pass rate (3%/3 mm criterion) was 91.46 +/- 4.63%. DSC-CTV down to 0.65 accounted for a variation of more than 6% of V95 and 3 Gy of D95. DSC-CTV up to 0.80 accounted for a variation of less than 4% of V95 and 2 Gy of D95. The mean Delta D90/Delta D95 of CTV and TB were less than 2Gy/4Gy, 4Gy/5Gy for all the patients. The cardiac dose difference in left breast cancer cases was larger than that in right breast cancer cases. ConclusionsThe accurate multitarget delineation is achievable on pCT and sCT via deep learning. The results show that dose distribution needs to be considered to evaluate the clinical impact of geometric variations during breast cancer radiotherapy.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 3 区 肿瘤学
最新[2025]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2019]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Guangzhou Univ Chinese Med, Affiliated Hosp 2, Dept Radiat Therapy, Guangzhou, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号