高级检索
当前位置: 首页 > 详情页

Automatic coronary artery calcium scoring on routine chest computed tomography (CT): comparison of a deep learning algorithm and a dedicated calcium scoring CT

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [2]Alibaba Group, Hangzhou, China [3]Department of Radiology, Shunyi Hospital, Beijing Traditional Chinese Medicine Hospital, Beijing, China [4]Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China [5]School of Medicine, South China University of Technology, Guangzhou, China [6]The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
出处:
ISSN:

关键词: Coronary artery disease coronary artery calcium (CAC) score deep learning chest computed tomography (CT) atherosclerosis

摘要:
Background: The aim of this study was to investigate the reliability and accuracy of automatic coronary artery calcium (CAC) scoring and risk classification in non-gated, non-contrast chest computed tomography (CT) of different slice thicknesses using a deep learning algorithm. Methods: This retrospective study was performed at 2 tertiary hospitals. Paired, dedicated calcium-scoring CT scans and non-gated, non-contrast chest CT scans taken within a month from the same patients were included. Chest CT images were grouped according to the slice thickness (group A: 1 mm; group B: 3 mm). For internal scans, the CAC score manually measured on dedicated calcium scoring CT images was used as the gold standard. The deep learning algorithm for group A was trained using 150 chest CT scans and tested using 144 scans, and that for group B was trained using 170 chest CT scans and tested using 144 scans. The intraclass correlation coefficient (ICC) was used to evaluate the correlation between the algorithm and the gold standard. Agreement between the deep learning algorithm, the manual results on chest CT, and the gold standard was determined by Bland-Altman analysis. Cardiac risk categories were compared. External validation was performed on 334 paired scans from a different organization. Results: A total of 608 internal paired scans (1 mm: 294; 3 mm: 314) of 406 individuals and 334 external paired scans (1 mm: 117; 3 mm: 117) of 117 individuals were included in the analysis. The ICCs between the deep learning algorithm and the gold standard were excellent in both group A (0.90; 95% CI: 0.85-0.93) and group B (0.94; 95% CI: 0.92-0.96). The Bland-Altman plots showed good agreement in both groups. For the cardiovascular risk category, the deep learning algorithm accurately classified 71% of cases in group A and 81% of cases in group B. The Kappa values for risk classification were 0.72 in group A and 0.82 in group B. External validation yielded equally good results. Conclusions: The automatic calculation of CAC score and cardiovascular risk stratification on non-gated chest CT using a deep learning algorithm was reliable and accurate on both 1 and 3 mm scans. Chest CT with a slice thickness of 3 mm was slightly more accurate in CAC detection and risk classification.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2020]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
通讯作者:
通讯机构: [1]Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China [*1]Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:2018 今日访问量:0 总访问量:645 更新日期:2024-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 广东省中医院 技术支持:重庆聚合科技有限公司 地址:广州市越秀区大德路111号